Open Journal Systems

Towards Using Cloud Elasticity on the Internet of Things Landscape

Rodrigo da Rosa Righi, Márcio Miguel Gomes, Cristiano Andrá da Costa, Helge Parzyjegla, Hans-Ulrich Heiss


The digital universe is growing at significant rates in recent years. One of the main responsible for this sentence is the Internet of Things, or IoT, which requires a middleware that should be capable to handle this increase of data volume at real-time. Particularly, data can arrive in the middleware in parallel as in terms of input data from Radio-Frequency Identification (RFID) readers as request-reply query operations from the users side. Solutions modeled at software, hardware and/or architecture levels present limitations to handle such load, facing the problem of scalability in the IoT scope. In this context, this arti- cle presents a model denoted Eliot - Elasticity-driven Internet of Things - which combines both cloud and high performance computing to address the IoT scal- ability problem in a novel EPCglobal-compliant architecture. Particularly, we keep the same API but offer an elastic EPCIS component in the cloud, which is designed as a collection of virtual machines (VMs) that are allocated and deallocated on-the-fly in accordance with the system load. Based on the Eliot model, we developed a prototype that could run over any black-box EPCglobal- compliant middleware. We selected the Fosstrak for this role, which is currently one of the most used IoT middlewares. Thus, the prototype acts as an upper layer over the Fosstrak to offer a better throughput and latency performances in an effortless way. The results are encouraging, presenting significant performance gains in terms of response time and request throughput when comparing both elastic (Eliot) and non-elastic (standard Fosstrak) executions.



Internet of things; cloud elasticity; EPCglobal; performance; adaptivity; EPCIS.

Full Text:



J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): A vision, architectural elements, and future directions, CoRR abs/1207.0203.

J. Guo, H. Zhang, Y. Sun, R. Bie, Square-root unscented kalman filtering- based localization and tracking in the internet of things, Personal Ubiqui- tous Comput. 18 (4) (2014) 987–996. doi:10.1007/s00779-013-0713-8. URL

J. Leung, W. Cheung, S.-C. Chu, Aligning rfid applications with supply chain strategies, Inf. Manage. 51 (2) (2014) 260–269. doi:10.1016/ 2013.11.010.


M. Kang, D.-H. Kim, A real-time distributed architecture for rfid push service in large-scale epcglobal networks, in: T.-h. Kim, H. Adeli, H.-s. Cho, O. Gervasi, S. Yau, B.-H. Kang, J. Villalba (Eds.), Grid and Distributed Computing, Vol. 261 of Communications in Computer and Information Science, Springer Berlin Heidelberg, 2011, pp. 489–495.

J. I. S. Jose, J. M. Pastor, R. Zangroniz, J. J. de Dios, Rfid tracking for urban transportation using epcglobal-based webservices, in: Proceedings of the 2013 27th International Conference on Advanced Information Net- working and Applications Workshops, WAINA ’13, IEEE Computer Soci- ety, Washington, DC, USA, 2013, pp. 1295–1300. doi:10.1109/WAINA. 2013.65.

URL 32

M. P. Schapranow, Real-time Security Extensions for EPCglobal Networks: Case Study for the Pharmaceutical Industry, Springer Publishing Company, Incorporated, 2013.

D. C. Ranasinghe, M. Harrison, P. H. Cole, Epc network architecture, in: P. H. Cole, D. C. Ranasinghe (Eds.), Networked RFID Systems and Lightweight Cryptography, Springer Berlin Heidelberg, 2008, pp. 59–78. doi:10.1007/978-3-540-71641-9_4.

S. Hodges, S. Taylor, N. Villar, J. Scott, D. Bial, P. Fischer, Prototyping connected devices for the internet of things, Computer 46 (2) (2013) 26 –34. doi:10.1109/MC.2012.394.

D. Miorandi, S. Sicari, F. D. Pellegrini, I. Chlamtac, Internet of things: Vision, applications and research challenges, Ad Hoc Networks 10 (7) (2012) 1497 – 1516. doi:10.1016/j.adhoc.2012.02.016.

URL S1570870512000674

Coulouris, J. Dollimore, T. Kindberg, G. Blair, Distributed Systems: Con- cepts and Design (5th Edition), Addison-Wesley, Boston, MA, USA, 2011.

T. Heinze, V. Pappalardo, Z. Jerzak, C. Fetzer, Auto-scaling techniques for elastic data stream processing, in: Proceedings of the 8th ACM Interna- tional Conference on Distributed Event-Based Systems, DEBS ’14, ACM, New York, NY, USA, 2014, pp. 318–321. doi:10.1145/2611286.2611314. URL

M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi, C. Ghezzi, S. Krsti ́c, Towards the formalization of properties of cloud-based elastic systems, in: Proceedings of the 6th International Workshop on Principles of Engineering Service-Oriented and Cloud Systems, PESOS 2014, ACM, New York, NY, USA, 2014, pp. 38–47. doi:10.1145/2593793.2593798.

URL 33

M. M. Gomes, R. d. R. Righi, C. A. da Costa, Future directions for pro- viding better iot infrastructure, in: Proceedings of the 2014 ACM Interna- tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp ’14 Adjunct, ACM, New York, NY, USA, 2014, pp. 51–54. doi:10.1145/2638728.2638752.


Y. Omote, T. Shinagawa, K. Kato, Improving agility and elasticity in bare-metal clouds, in: Proceedings of the Twentieth International Confer- ence on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15, ACM, New York, NY, USA, 2015, pp. 145–159. doi:10.1145/2694344.2694349.


W. Dawoud, I. Takouna, C. Meinel, Elastic vm for cloud resources pro- visioning optimization, in: A. Abraham, J. Lloret Mauri, J. Buford, J. Suzuki, S. Thampi (Eds.), Advances in Computing and Communica- tions, Vol. 190 of Communications in Computer and Information Sci- ence, Springer Berlin Heidelberg, 2011, pp. 431–445. doi:10.1007/ 978-3-642-22709-7_43.

D. Clark, V. Jacobson, J. Romkey, H. Salwen, An analysis of tcp processing overhead, Communications Magazine, IEEE 40 (5) (2002) 94–101. doi: 10.1109/MCOM.2002.1006979.

B. Nguyen, A. Banerjee, V. Gopalakrishnan, S. Kasera, S. Lee, A. Shaikh, J. Van der Merwe, Towards understanding tcp performance on lte/epc mo- bile networks, in: Proceedings of the 4th Workshop on All Things Cellular: Operations, Applications, & Challenges, AllThingsCellular ’14, ACM, New York, NY, USA, 2014, pp. 41–46. doi:10.1145/2627585.2627594. URL

L. V. Massawe, F. Aghdasi, J. Kinyua, The development of a multi-agent based middleware for rfid asset management system using the passi method-

ology, in: Proceedings of the 2009 Sixth International Conference on Infor- mation Technology: New Generations, ITNG ’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 1042–1048. doi:10.1109/ITNG.2009. 230.


B. S. Prabhu, X. Su, H. Ramamurthy, C. cheng Chu, R. Gadh, Winrfid a middleware for the enablement of radio frequency identification (rfid) based applications, in: in Mobile, Wireless and Sensor Networks: Technology, Applications and Future, John Wiley and Sons, Inc, 2005, pp. 331–336.

L. F. Cervantes, Y.-S. Lee, H. Yang, J. Lee, A hybrid middleware for rfid- based parking management system using group communication in overlay networks, in: Proceedings of the The 2007 International Conference on Intelligent Pervasive Computing, IPC ’07, IEEE Computer Society, Wash- ington, DC, USA, 2007, pp. 521–526. doi:10.1109/IPC.2007.12.


N. Ahmed, R. Kumar, R. S. French, U. Ramachandran, Rf2id: A reliable middleware framework for rfid deployment., in: IPDPS, IEEE, 2007, pp. 1–10.

A. Kabir, B. Hong, W. Ryu, S. Ahn, Lit middleware: Design and imple- mentation of rfid middleware based on the epc network architecture, in: H.-J. Kreowski, B. Scholz-Reiter, H.-D. Haasis (Eds.), Dynamics in Logis- tics, Springer Berlin Heidelberg, 2008, pp. 221–229.

A. Solanas, J. Domingo-Ferrer, A. Mart ́ınez-Ballest ́e, V. Daza, A dis- tributed architecture for scalable private rfid tag identification, Comput. Netw. 51 (9) (2007) 2268–2279. doi:10.1016/j.comnet.2007.01.012. URL


F. Li, M. Voegler, M. Claessens, S. Dustdar, Ecient and scalable iot ser- vice delivery on cloud, in: Proceedings of the 2013 IEEE Sixth International

Conference on Cloud Computing, CLOUD ’13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 740–747. doi:10.1109/CLOUD.2013.64. URL

J. Im, S. Kim, D. Kim, Iot mashup as a service: Cloud-based mashup service for the internet of things, in: Services Computing (SCC), 2013 IEEE International Conference on, 2013, pp. 462–469. doi:10.1109/SCC. 2013.68.

A. Biswas, R. Gia↵reda, Iot and cloud convergence: Opportunities and challenges, in: Internet of Things (WF-IoT), 2014 IEEE World Forum on, 2014, pp. 375–376. doi:10.1109/WF-IoT.2014.6803194.

S. Nastic, S. Sehic, M. Vogler, H.-L. Truong, S. Dustdar, Patricia – a novel programming model for iot applications on cloud platforms, in: Service- Oriented Computing and Applications (SOCA), 2013 IEEE 6th Interna- tional Conference on, 2013, pp. 53–60. doi:10.1109/SOCA.2013.48.

C. Sarkar, S. Nambi, R. Prasad, A. Rahim, A scalable distributed archi- tecture towards unifying iot applications, in: Internet of Things (WF-IoT), 2014 IEEE World Forum on, 2014, pp. 508–513. doi:10.1109/WF-IoT. 2014.6803220.

C. Sarkar, A. Uttama Nambi S.N., R. Prasad, A. Rahim, R. Neisse, G. Bal- dini, Diat: A scalable distributed architecture for iot, Internet of Things Journal, IEEE PP (99) (2015) 1–1. doi:10.1109/JIOT.2014.2387155.

S. Ben Fredj, M. Boussard, D. Kofman, L. Noirie, A scalable iot ser- vice search based on clustering and aggregation, in: Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cy- ber, Physical and Social Computing, 2013, pp. 403–410. doi:10.1109/ GreenCom-iThings-CPSCom.2013.86.

A. P. Athreya, B. DeBruhl, P. Tague, Designing for self-configuration and self-adaptation in the internet of things, in: CollaborateCom’13, 2013, pp. 585–592.

D. Guinard, C. Floerkemeier, S. Sarma, Cloud computing, rest and mashups to simplify rfid application development and deployment, in: Pro- ceedings of the Second International Workshop on Web of Things, WoT ’11, ACM, New York, NY, USA, 2011, pp. 9:1–9:6. doi:10.1145/1993966. 1993979.


A. Wickramasinghe, D. Ranasinghe, A. Sample, Windware: Supporting ubiquitous computing with passive sensor enabled rfid, in: RFID (IEEE RFID), 2014 IEEE International Conference on, 2014, pp. 31–38. doi: 10.1109/RFID.2014.6810709.

T. Li, R. Deng, Scalable rfid authentication and discovery in epcglobal network, in: Communications and Networking in China, 2008. ChinaCom 2008. Third International Conference on, 2008, pp. 1138–1142. doi:10. 1109/CHINACOM.2008.4685227.

M. Li, Z. Zhu, G. Chen, A scalable and high-eciency discovery service using a new storage, in: Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual, 2013, pp. 754–759. doi:10.1109/ COMPSAC.2013.125.

J. Li, S. Liu, D. Wang, An extensible epcis data model, in: Conference Anthology, IEEE, 2013, pp. 1–6. doi:10.1109/ANTHOLOGY.2013.6784744.

L. Schmidt, N. Mitton, D. Simplot-Ryl, R. Dagher, R. Quilez, Dht-based distributed ale engine in rfid middleware, in: RFID-Technologies and Ap- plications (RFID-TA), 2011 IEEE International Conference on, 2011, pp. 319–326. doi:10.1109/RFID-TA.2011.6068656.

R. Itsuki, A. Fujita, Consideration for ecient rfid information retrieval in traceability system, in: Proceedings of the 14th IEEE International Con- ference on Emerging Technologies & Factory Automation, ETFA’09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 429–432.


H. Yin, Y. Jiang, C. Lin, Y. Luo, Y. Liu, Big data: transforming the design philosophy of future internet, Network, IEEE 28 (4) (2014) 14–19. doi:10.1109/MNET.2014.6863126.

(186 Abstract Views, 117 PDF Downloads)


  • There are currently no refbacks.

Copyright (c) 2019 Rodrigo da Rosa Righi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.