### A new approach for solving fractional RL circuit model through quadratic Legendre multi-wavelets

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Razzaghi, M., Yousefi, S.: Legendre wavelet direct method for variational problems, Math. Comput. Simulat. 53, 185-192 (2000)

Razzaghi, M., Yousefi, S.: Legendre wavelet method for constrained optimal control problems, Math. Method Appl. Sci. 25, 529-539 (2002)

Jafari, H., Yousefi, S., Firoozjaee, M., Momani, S., Khalique, C.M.: Application of Legendre wavelets for solving fractional differential equations, Comp. and Math. with Appl. 62, 1038-1045 (2011)

Wang, Y., Fan, Q.: The second kind chebyshev wavelet method for solving fractional differential equations, Appl. Math. and Comput. 218, 8592-8601 (2012)

Heydari, M.H., Hooshmandasl, M.R., Mohummadi, F.: Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. and comput. 234, 267-276 (2014)

Rehman, M., Khan R.A.: The Legendre wavelets method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat. 16, 4163-4173 (2011)

Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York (1974)

Miller, K.S., Ross, B.: An introduction to the Fractional calculus and fractional differential equations, Wiley New York (1993)

Podlubny, I.: Fractional differential equations, Academic Press, New York (1999)

Chen, J.: Analysis of stability and convergence of numerical approximation for the riesz functional reaction-dispersion equation, J. Xiamen Univ. Nat. Sci. 46, 616-619 (2007)

Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math. 166, 209-219 (2004)

Chen, S., Liu, F.: Finite difference approximations for the fractional Fokker Planck equation, Appl. Math. Modell. 33, 256-273 (2009)

He, J.: Nonlinear oscillation with fractional derivative and its applications, Int. Conf. Vibr. Eng. 98, 288-291 (1998)

Mairardi, F.: Fractional calculus- Some basic problems in continuum and statistical mechanics, Fract. Calculus Conth. Mech. pp. 291-348 Springer (1997)

He, J.: Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol. 15, 86-90 (1999)

Bohannan, G.: Analogy fractional order controller in temperature and motor control applications, J. Vibr.

Control. 14, 1487-1498 (2008)

Panda, R., Dash, M.: Fractional generalized splines and signal processing, Signal Pro. 86, 2340-2350 (2006)

Chow, T.: Fractional dynamics of interfaces between soft-nanoparticales and rough substrates, Phys. Lett. A. 342, 148-155 (2005)

Gomez, F., Rosales, J., Guia, M.: RLC electrical circuit of non-integer order, Cent. Europ. J. of Phy. 11, 1361-1365 (2013)

Atangana, A. and Nieto, J.J.: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng. (2015). doi: 10.1177/168714015613758

Alsaedi, A., Nieto, J., Venktesh, V.: Fractional electrical circuits, adv. in mech. eng. 7, 1-7 (2015)

Abbas, S., Benchohra, M., N’Guerekata, G.M.: Topics in fractional differential equations. Springer, New York (2012)

Diethelm, K.: The analysis of fractional differential equations- An application-oriented exposition using differential operators of caputo type, 2004 (Lecture notes in Mathematics), Springer-Verlag, Berlin (2010)

L. Debnath, “Wavelet Transforms and Their Applications” Birkhauser, Boston, (2002)

Chui, C.K.: Wavelets- A mathematical tool for signal analysis, SIAM, Philadelphia PA (1997)

Strela, V.: Multiwavelets Theory and application, Ph.D. Thesis, MIT University (1996)

Pathak, A.: Numerical solution of linear integro-differential equation by using quadratic Legendre multiwavelets direct method, J. of Adva. Res. in Sci. Comput. 4, 1-11 (2012)

Arora, R., Chauhan, N.S.: An efficient decomposition method for solving telegraph equation through quadratic legendre multiwavelets, Int. J. Of Appl. And Comput. Math. (2016). doi: 10.1007/s40819-016-0178-3

M. H. Heydari, M. R. Hooshmandasl, F. M. M. Ghaini, F. Mohummadi, Wavelet collocation method for solving multi order fractional differential equations, J. Appl. Math. (2012). doi: 10.1155/2012/542401

Alpert, B.: A class of bases in for the sparse representation of integration operator, SIAM J. Math. Anal. 24, 246-262 (1993)

Daubechies, I.: Ten Lectures on Wavelet, SIAM, Philadelphian (1992)

DOI: http://dx.doi.org/10.18063/ijmp.v1i1.724

(

**114**Abstract Views,

**123**PDF Downloads)

### Refbacks

- There are currently no refbacks.

Copyright (c) 2018 Narottam Singh Chauhan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.