Undocumented migration in response to climate change

Raphael J. Nawrotzki1*, Fernando Riosmena2, Lori M. Hunter2, and Daniel M. Runfola3

1 Minnesota Population Center, University of Minnesota, 225 19th Avenue South, 50 Willey Hall, Minneapolis, MN 55455, USA
2 Institute of Behavioral Science, CU Population Center, University of Colorado Boulder, 1440 15th St. Boulder, CO 80309, USA
3 The College of William and Mary, 200 Stadium Drive, Williamsburg, VA 23185, USA

Abstract: In the face of climate change-induced economic uncertainties, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate-related migration will be documented or undocumented. In this study we combined detailed migration histories with daily temperature and precipitation information from 214 weather stations to investigate whether climate change more strongly impacted undocumented or documented migrations from 68 rural Mexican municipalities to the U.S. from 1986–1999. We employed two measures of climate change, the warm spell duration index (WSDI) and precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrated that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptations in rural Mexico may be more effective in reducing undocumented border crossings than increasing border fortification.

Keywords: climate change, environment, climate change adaptation, international migration, undocumented migration, documentation status, rural Mexico

1. Introduction

Climate change has the potential to strongly influence economic conditions through the agricultural sector (Boyd and Ibarraran, 2009). For instance, in Mexico, about 80% of economic losses between 1980 and 2000 have been attributed to climatic shocks (Saldana-Zorrilla and Sandberg, 2009). In rural areas of Mexico, households heavily depend on agricultural production for income and sustenance (de Janvry and Sadoulet, 2001; Winters, Davis and Corral, 2002). Similar to many households in various developing countries, rural Mexican households often lack the technological infrastructure to guard against adverse climate impacts (Gutmann and Field, 2010) as only about 23% of arable...
land in Mexico was irrigated in 2000 (Carr, Lopez and Bilsborrow, 2009). As such, we assume an agricultural pathway in which climate change impacts agricultural production, leading to livelihood instabilities (Black, Adger, Arnell et al., 2011a).

In response to livelihood uncertainties, households may employ migration as a household-level risk management strategy (Massey, Arango, Hugo et al., 1993). A household may send a migrant to an international destination to access a stable income stream through remittances, which is independent of the local climate and market conditions (Stark and Bloom, 1985). A number of studies have explored the relationship between climate and migration from Mexico and found a significant relationship between rainfall decline and international outmigration, largely from rural areas with established transnational networks (Feng and Oppenheimer, 2012; Hunter, Murray and Riosmena, 2013; Nawrotzki, Riosmena and Hunter, 2013). However, no studies have been done to investigate whether climate change is associated with undocumented versus documented/legal migrations.

Insights from related literatures suggest that climate change may influence undocumented migrations in different ways than documented migrations. If climatic shocks such as droughts impair the livelihoods of rural farmers, households may not have sufficient time for visa applications, a process which could take years to complete (Papademetrious and Terrazas, 2009) and would instead choose the more rapid path of undocumented border crossing. This assumption is in line with the literature on migratory responses to the impact of economic recessions. Historical evidences suggest that economic crises in Mexico have resulted in surges of undocumented migration to the U.S. (Hanson and Spilimbergo, 1999). Likewise, unauthorized movement is also much more responsive to economic crises in the U.S. than movement through legal immigration channels (Papademetrious and Terrazas, 2009). In a similar way, climatic shocks may indirectly influence migration dynamics through its impacts on various economic sectors (Boyd and Ibarraran, 2009) and therefore disproportionately drive undocumented migrations. Shedding some light on this unsolved puzzle, this paper investigated whether climate change and variability more strongly influences undocumented versus documented migrations from rural Mexico to the U.S.

2. Data and Methods

2.1 Data

We combined detailed migration histories from the Mexican Migration Project (MMP) (Massey, 1987) with daily temperature and precipitation information obtained from the Global Historical Climate Network (GHCN) (Menne, Durre, Vose et al., 2012) from 214 weather stations across Mexico. Both data sets undergo rigorous quality checks and have been used in a wide range of published research (Alexander, Zhang, Petersen et al., 2006; Hunter, Murray and Riosmena, 2013; Massey, Durand and Pren, 2015; Wu, 2015). The MMP started collecting data in 1982 and selects between two and five communities each year, interviewing a random sample of 200 households in each community (Massey, 1987). For this study, we employed data from MMP waves 1987–2013, resulting in an analytical sample of 7,062 households located in 68 rural municipalities. Although not strictly nationally representative, validation exercises have demonstrated that the MMP very accurately reflects the characteristics and behavior of international migrants (Massey and Capoferro, 2004).

The MMP data contains a wealth of sociodemographic information on all household members and most importantly for this study, about the year of the first move to the U.S. and the documentation status during that particular trip. This retrospective information on
the date of the first move enabled us to construct an event-history file, indicating the household migration status for each observational year during the study period of 1986–1999. This period was chosen as a time of relatively stable migration policies following the enactment of the Immigration Reform and Control Act (IRCA) in 1986 (LoBreglio, 2004) and because Mexico experienced conditions of increased temperature and drought during the 1990s (Stahle, Cook and Villanueva Diaz et al., 2009) that resemble conditions expected under climate change (Collins, Knutti, Arblaster et al., 2013; Wehner, Easterling, Lawrimore et al., 2011). A reduction in the weather stations available through GHCN after 1999 prevented the construction of the climate measures for later years.

2.2 Outcome Variable

In the cultural context of Mexico, migration needs to be considered as a household-level strategy (Cohen, 2004). A household sends a migrant to an international destination as a self-insurance mechanism against local market failure, expecting the migrant to remit money to support the household in Mexico (Massey, Arango, Hugo et al., 1993; Taylor, 1999). We therefore focused on the household as the unit of analysis, in line with prior work (de Janvry, Sadoulet, Davis et al., 1997; Hunter, Murray and Riosmena, 2013; Kanaiaupuni, 2000). We constructed an event history file (risk set) in which household-years are assigned a value of 0 when the household was at risk for international migration but no move occurred, a value of 1 if an undocumented international move occurred, or a value of 2 if a documented international move occurred. Households were at risk of migration if they did not send a member to the U.S. before 1986. Households were included in the data set for the years after 1986 as long as the household heads were at least 15 years of age, and after the date of their first union formation (household heads can get divorced, widowed, and remarry in later years). These criteria ensured that households were truly formed during the years when they were exposed to the risk of migration. Households were removed from the data set following the year of the first move, when the household head turns 65, when the household is censored at the survey year, or at the end of the study period in 1999. Households may move in and out of the study community and are only exposed to the risk of migration if at least one core household member (head or spouse) was present during a given year.

Although other pathways are possible (Burke, Miguel, Satyanath et al., 2009; Nawrotzki, Diaconu and Pittman, 2009), we assumed that climatic effects lead to migration through negative impacts on the agricultural sector (Mueller, Gray and Kosec, 2014). Rural households in Mexico heavily depend on agricultural production for income and sustenance (Conde, Ferrer and Orozco, 2006; Wiggins, Keilbach, Preibisch et al., 2002; Winters, Davis and Corral, 2002). As such, we focus our analysis on 68 municipalities that contain rural MMP communities (population < 10,000) dispersed across the country. Figure 1 illustrated the location of the rural municipalities as well as the 214 weather stations from which daily temperature and precipitation data were available.

2.3 Primary Predictors

Previous research has shown that temperature and precipitation above and below certain thresholds have the strongest impact on agricultural production (Lobell, Hammer, McLean et al., 2013; Schlenker and Roberts, 2009). As such, we employed two climate change indices that reflect percentile-based threshold effects, namely the warm spell duration index (WSDI) and precipitation during extremely wet days (R99PTOT). The warm spell duration index was computed as the annual count of days when at least six consecutive days of
maximum temperature were above the 90th percentile of the 30-year reference period (1961–1990). The 30-year period from 1961–1990 is known as “climate normal” and recommended by the World Meteorological Organization (WMO) as reference period for the study of climatological trends (Arguez and Vose, 2011). Precipitation during extremely wet days was computed as the annual total precipitation from days when precipitation was greater than the 99th percentile of the 30-year reference period (1961–1990). These climate change indices have been formalized by the Expert Team on Climate Change Detection and Indices (ETCCDI), sponsored by the World Meteorological Organization and the United Nations, to increase the comparability of climate change studies across time and space (Peterson and Manton, 2008).

Although the GHCN undergoes rigorous quality checks (Menne, Durre, Vose et al., 2012), about 21% of the records were missing, largely due to instrumentation errors. As recommended by Auffhammer et al. (2013), we imputed the missing data to generate a balanced panel of complete weather station records. We employed Multiple Imputation (MI) (Allison, 2002) using the R package Amelia (Honaker, King and Blackwell, 2011), which was designed for the imputation of time-series data by explicitly accounting for temporal trends. The complete time series of daily temperature and precipitation records were then used as input to construct the two climate change indices for each weather station for the years 1961–1999 using the R package climdex.pcic, maintained by the Pacific Climate Impact Consortium (Bronaugh, 2014).

We then employed CoKriging as a geostatistical method of interpolation (Bolstad, 2012; Hevesi, Istok and Flint, 1992) to generate a surface of climate change index values across Mexico. CoKriging is a method frequently employed to interpolate climate measures and indices (Aznar, Gloaguen, Tapsoba et al., 2013; Rogelis & Werner, 2013) and it allowed us
to account for the correlation between climate and elevation using a Digital Elevation Model (DEM) (Danielson and Gesch, 2011) as a covariate in the interpolation model. We employed a bootstrap resampling procedure to cross-validate the interpolation results and found the local estimates to be robust. Using a lattice of 700×700 m, we then extracted climate change values from the interpolation surface and assigned the respective area average to each MMP municipality for which migration histories were available.

Finally, we computed relative change measures as the standardized difference between the climate index value during the 3-year window leading up to each observational year and a 30-year (1961–1990) long-term average. A 3-year window was chosen to minimize the influence of short-term fluctuations and to account for lagged response patterns (McLeman, 2011). Figure 2 shows the hazards of migration as well as the climate change index values across the study period. Panel A shows a certain degree of similarity between the trajectory of the hazard of documented and undocumented migrations with higher values in the late 80s and late 90s. During these years, Mexico experienced two economic recessions (Lustig, 1990; McKenzie, 2006) that may have influenced the decision to migrate with or without proper documentations. Panel B shows the change in the two climate change measures relative to the baseline period (1961–1990). In line with climatological reports (Stahle, Cook, Villanueva Diaz et al., 2009), the warm spell duration index showed an increase in the consecutive number of hot days over the study period. However, no clear trends could be discerned for precipitation during extremely wet days.

2.4 Control Variables

We included various control variables, reflecting social, human, physical, financial and natural capitals. These variables have been shown to be important predictors of migration in prior research (Brown and Bean, 2006; Massey, Axinn and Ghimire, 2010; Nawrotzki, Riosmena and Hunter, 2013). Table 1 provides source information and summary statistics on all control variables employed in the analysis. Variables were included as time varying and time invariant and operated both at the household and municipality levels. When information was available at decadal time steps (e.g., census data), we employed linear interpolation to derive semi time-varying measures, a common practice in event-history analysis (Allison, 1984).

Measures of social capital include gender (female = 1) and marital status (married = 1) of the household head. In a patriarchal society such as Mexico, social status and access to social networks differ by gender and has been shown to significantly shape migration

![Figure 2. Hazards of undocumented and documented international migrations from rural Mexico as well as climate change values across the study period, 1986–1999.](image-url)
Table 1. Summarized statistical and source information of variables employed in the study of undocumented and documented migrations in response to climate change from rural Mexico, 1986–1999

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>TV</th>
<th>Source</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household level (head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>0</td>
<td>No</td>
<td>MMP</td>
<td>0.14</td>
</tr>
<tr>
<td>Married</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
<td>MMP</td>
<td>0.80</td>
</tr>
<tr>
<td>Human capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of children</td>
<td>Count</td>
<td>Yes</td>
<td>MMP</td>
<td>0.85</td>
<td>1.04</td>
</tr>
<tr>
<td>Education</td>
<td>Years</td>
<td>Yes</td>
<td>MMP</td>
<td>5.34</td>
<td>4.28</td>
</tr>
<tr>
<td>Working experience</td>
<td>Years</td>
<td>Yes</td>
<td>MMP</td>
<td>24.94</td>
<td>12.34</td>
</tr>
<tr>
<td>Occupation: not in labor force</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
<td>MMP</td>
<td>0.09</td>
</tr>
<tr>
<td>Occupation: blue collar</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
<td>MMP</td>
<td>0.82</td>
</tr>
<tr>
<td>Occupation: white collar</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
<td>MMP</td>
<td>0.09</td>
</tr>
<tr>
<td>Physical capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owns property</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
<td>MMP</td>
<td>0.70</td>
</tr>
<tr>
<td>Owns business</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
<td>MMP</td>
<td>0.16</td>
</tr>
<tr>
<td>Community/municipality level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network density</td>
<td>%</td>
<td>Yes</td>
<td>MMP-C</td>
<td>15.18</td>
<td>14.51</td>
</tr>
<tr>
<td>Financial capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wealth index</td>
<td>z-values</td>
<td>Yes</td>
<td>IPUMS-I</td>
<td>−0.79</td>
<td>0.39</td>
</tr>
<tr>
<td>Natural capital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn (area harvested)</td>
<td>sqm/10ha</td>
<td>No</td>
<td>TerraPop</td>
<td>1.26</td>
<td>1.11</td>
</tr>
<tr>
<td>Farmland irrigated</td>
<td>%</td>
<td>No</td>
<td>INEGI</td>
<td>23.67</td>
<td>25.74</td>
</tr>
<tr>
<td>Base period precip (1961-90)</td>
<td>mm/day</td>
<td>No</td>
<td>GHCN-D</td>
<td>2.83</td>
<td>1.34</td>
</tr>
<tr>
<td>Base period temp (1961-90)</td>
<td>deg. C</td>
<td>No</td>
<td>GHCN-D</td>
<td>21.07</td>
<td>2.93</td>
</tr>
<tr>
<td>Economic environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male labor in agriculture</td>
<td>%</td>
<td>Yes</td>
<td>MMP-C</td>
<td>56.15</td>
<td>17.65</td>
</tr>
<tr>
<td>Climate change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm spell duration</td>
<td>z-values</td>
<td>Yes</td>
<td>GHCN-D</td>
<td>1.79</td>
<td>2.22</td>
</tr>
<tr>
<td>Precip extremely wet days</td>
<td>z-values</td>
<td>Yes</td>
<td>GHCN-D</td>
<td>0.34</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Notes: TV = Time varying; Source information: MMP = Mexican Migration Project data available from http://mmp.opr.princeton.edu/; MMP-C = COMMUN supplementary file of the MMP; IPUMS-I = Mexican census data (1% extract) obtained via Integrated Public Use Microdata Series – International (MPC, 2013a; Ruggles et al., 2003); TerraPop = Cropland type data obtained via Terra Populus (Kugler et al., 2015; MPC, 2013b); INEGI = Data obtained from Instituto Nacional de Estadística y Geografía (INEGI, 2012); GHCN-D = Data derived from the Global Historical Climate Network – Daily (Menne et al., 2012); ESRI = Spatial data library ArcGIS Online (ESRI, 2012).

Responses (Kanaiaupuni, 2000). Similarly, a marital union may expand a household’s family and kin networks that may serve as an informal social security system in times of crisis (Abu, Codjoe and Sward, 2014). In addition, we employed a measure of the percentage of adults within the community with migration experiences as a proxy indicator of migrant network density, which has been shown to strongly determine the likelihood of a future move (Fussell and Massey, 2004). We measured human capital by accounting for the number of young children (age < 5 years) in the household as well as the education (years of schooling), working experience (years employed), and occupation (blue collar, white collar, not in labor force) of the household head. The presence of young children ties human capital needed for nurturing
 Undocumented migration in response to climate change

activities to the household and has been shown to reduce the odds of an international move (Massey & Riosmena, 2010; Nawrotzki, Riosmena and Hunter, 2013). We were unable to include a measure for age of the household head in the models due to high correlation with working experience ($r = 0.93$) and resulting multi-collinearity.

Financial capital is measured by a standardized wealth index at the municipality level that combines information from 10 variables on the quality of housing (floor material, wall, roof, number of rooms, toilet type) as well as service and infrastructure access (water supply, electricity, sewage system, cooking fuel type) (Cronbach’s alpha = 0.85). In the developing world, migration is often used as a means to overcome liquidity constraints to purchase a home or start a business (Massey and Parrado, 1998; Taylor, Arango, Hugo et al., 1996). To account for this relationship, we measured the level of physical capital in terms of business or property ownership (owner = 1) at the household level.

As a measure of natural capital we accounted for the general agricultural dependence by using a measure of the corn area harvested. This measure was constructed by the Global Landscape Initiative (Monfreda, Ramakutty and Foley, 2008) for the year 2000 and is available through the Terra Populus data extract system (Kugler, Van Riper, Manson et al., 2015; MPC, 2013b). Since the impact of climate effects on livelihoods may depend on the ability to employ technological infrastructure (Gutmann and Field, 2010), we accounted for access to irrigation systems through a measure of the percentage of farmland irrigated. This data was obtained from the Mexican agricultural census (INEGI, 2012) and averaged across the years 2003–2005. In addition, prior research has shown that the effects of climate variability on migration differ based on the general climatic context (Nawrotzki, Riosmena and Hunter, 2013). To account for the general climatic background, we included measures of the average temperature and precipitation during the baseline years (1961–1990). Finally, we captured employment in climate sensitive sectors through a measure of the percentage of males in the labor force employed in agriculture.

2.5 Estimation Strategy

We employed event-history models for this analysis (Allison, 1984). The models were estimated within a competing risk framework, in which the household can either perform an undocumented or documented move (Singer and Willett, 2003). Owing to the hierarchical structure of our data, we employed a multi-level version of the event-history model that accounted for the nesting of households within municipalities (Steele Diamond and Amin, 1996; Steele, Goldstein and Browne, 2004). To guard against endogeneity, all predictors were lagged by one year (Gray, 2009; Gray, 2010).

$$\log \left(\frac{m_{jk}}{s_{jk}} \right) = \alpha + \beta_1 (WSDI_{ik}) + \beta_2 (R99PTOT_{ik}) + \sum_{n=3}^{y} \beta_n (x_{nz}) + u_k$$ \hspace{1cm} (1)

In Equation 1, the multi-level event-history model is specified as the odds of experiencing a migration event type m (undocumented or documented migrations) relative to no mobility (event type s) for each household j located in municipality k during year i. The parameter α captures the baseline hazard and was included as a set of year dummies for the most flexible representation of time (Singer and Willett, 2003). This parameterization accounts for differences in the overall migration levels in each year, which can be attributed to various unmeasured factors such as changes in the macroeconomic conditions in the origin and destination countries. The parameters β_1 and β_2 reflect the effect of the two climate change indices (WSDI and R99PTOT), which were jointly included in the model to simultaneously account for temperature and precipitation changes (Auffhammer, Hsiang, Schlenker et al., 2013). The climate change variables constitute time-varying municipal-
ity-level predictors (indicated by subscript i_k), and it has been shown that a two-level model structure is appropriate for such variables (Barber, Murphy, Axinn et al., 2000). All models control for the effect (β_n) of various sociodemographic factors (x_n) on the probability to migrate. These controls can operate both at the household and municipality levels, indicated by the generic subscript z.

Although tests have shown that recall bias is of little concern for the MMP data (Massey, Alarcon, Durand et al., 1987), we included a measure for the survey year to account for residual recall error. Finally, the parameter u_k constitutes the municipality’s random effects term that accounts for the nesting of households within municipalities. The multi-level event history models were estimated using the package *lme4* (Bates, 2010; Bates, Maechler, Bolker et al., 2014) within the R statistical environment (RCoreTeam, 2015).

During the 1986–1999 study period, $n = 819$ households reported undocumented moves while only $n = 95$ households reported documented moves. Although a documented move constituted a rare event, discrete-time event history models are specifically designed for small numbers. Simulation exercises have demonstrated that at least five events per predictor are necessary to produce unbiased and reliable estimates (Vittinghoff and McCulloch, 2007). The fitted models (Table 2) contained 19 substantive predictors, yielding an average of five events per predictor for the total of 95 documented migration events, which constituted a sufficiently large number to produce valid and stable results.

3. Results

In line with prior work, results from the multi-level event-history models (Table 2) revealed that undocumented migrations most likely occurred from male headed households without young children in which the household head has little education and work experience, is employed in a blue collar occupation and does not own a business or property (Fussell, 2004; Massey, Alarcon, Durand et al., 1987; Massey and Parrado, 1998; Nawrotzki, Riosmena and Hunter, 2013; Woodruff and Zenteno, 2007). The presence of migrant networks strongly facilitates both documented and undocumented migrations (Fussell and Massey, 2004; Massey and Espinosa, 1997). In contrast, documented migrants are usually better educated and come from areas less dependent on agricultural production (Fussell, 2004). As the primary analytical focus, the models also included the two climate change indices.

The results show that climate change significantly influenced international migration from rural Mexico to the U.S. but that this relationship exclusively emerged for undocumented moves. The significant temperature effect suggested that an increase in warm spell duration by one standard deviation unit increased undocumented international out-migrations by 19% (Odd Ratio [OR] = 1.19). In contrast, an increase in precipitation during extremely wet days by one standard deviation reduced the odds of an undocumented international move to the U.S. by 18% (OR = 0.82).

4. Discussion and Conclusions

Combining detailed migration histories with two climate change indices based on daily temperature and precipitation information, this study provides evidence that rural Mexican households employed migration as an adaptation strategy in the face of adverse climate variability and change. However, while the results demonstrate that climate change significantly influenced undocumented migrations, it had no impact on documented moves. As it is often difficult to obtain a valid work visa given the quotas, backlogs and application costs (Papademetrious and Terrazas, 2009), households may resort to undocumented border
Table 2. Multi-level discrete-time event history models predicting the odds of undocumented and documented international migrations from rural Mexico, 1986–1999

<table>
<thead>
<tr>
<th></th>
<th>Undocumented</th>
<th></th>
<th>Documented</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>sig.</td>
<td>b</td>
<td>sig.</td>
</tr>
<tr>
<td>Household level (head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.53</td>
<td>***</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.96</td>
<td></td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>No. of children</td>
<td>0.90</td>
<td>**</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Education*</td>
<td>0.74</td>
<td>**</td>
<td>3.29</td>
<td>***</td>
</tr>
<tr>
<td>Working experience a</td>
<td>0.71</td>
<td>***</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Occupation: not in labor force</td>
<td>0.91</td>
<td></td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>Occupation: white collar</td>
<td>0.50</td>
<td>***</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Owns property</td>
<td>0.83</td>
<td>*</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>Owns business</td>
<td>0.77</td>
<td>*</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Community/municipality level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network density a</td>
<td>1.56</td>
<td>***</td>
<td>1.49</td>
<td>**</td>
</tr>
<tr>
<td>Wealth index</td>
<td>0.81</td>
<td></td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Corn (area harvested)</td>
<td>0.94</td>
<td></td>
<td>0.68</td>
<td>*</td>
</tr>
<tr>
<td>Farmland irrigated a</td>
<td>1.04</td>
<td></td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Base period precip (1961-90)</td>
<td>1.11</td>
<td></td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Base period temp (1961-90)</td>
<td>0.91</td>
<td>**</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Male labor in agriculture a</td>
<td>1.01</td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Climate change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm spell duration</td>
<td>1.19</td>
<td>***</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Precip extremely wet days</td>
<td>0.82</td>
<td>***</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Model statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var. Intercept (Mun)</td>
<td>0.215</td>
<td></td>
<td>0.718</td>
<td></td>
</tr>
<tr>
<td>BIC</td>
<td>8451</td>
<td></td>
<td>1703</td>
<td></td>
</tr>
<tr>
<td>N (HH-year)</td>
<td>67511</td>
<td></td>
<td>67511</td>
<td></td>
</tr>
<tr>
<td>N (HH)</td>
<td>7062</td>
<td></td>
<td>7062</td>
<td></td>
</tr>
<tr>
<td>N (Mun)</td>
<td>68</td>
<td></td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Coefficients reflect odd ratios; * Coefficients relate to an incremental change of 10 units; baseline hazard of migration was included as a multi-part intercept using year dummies (not shown); all models control for the survey year to account for recall bias (not shown); Occupation: Blue collar used as reference; all predictors were lagged by one year; low values on the Variance Inflation Factor (VIF) demonstrated that multi-collinearity does not bias the estimates; a jack-knife type procedure was performed, iteratively removing one municipality from the sample and re-estimating the model (Nawrotzki, 2012; Ruiter & De Graaf, 2006). The results showed that the estimates for the climate change predictors are highly robust; * p < 0.05; ** p < 0.01; *** p < 0.001

Undocumented migration in response to climate change

crossings to stabilize their livelihoods and access alternative income streams through remittances.

The directionality of significant climate change effects suggests a rise in undocumented international migrations in response to a warming in temperatures. Heat waves and temperature increases are problematic for the agricultural sector and are associated with a decline in crop yield (Lobell, Hammer, McLean et al., 2013). Adverse impacts on agricultural productivity may lead to a decline in income and employment opportunities to which households may respond with increased levels of migration (Bohra-Mishra, Oppenheimer and Hsiang, 2014; Mueller, Gray and Kosec, 2014).

In contrast, increases in precipitation led to a decline in undocumented migrations. Only
a small proportion (23%) of arable land in Mexico is irrigated (Carr, Lopez and Bilsborrow, 2009), making agricultural production highly dependent on rainfall. In addition, Mexico experienced severe drought conditions during the study period (Stahle, Cook, Villanueva Diaz et al., 2009). Under such conditions, an increase in rainfall was likely beneficial, reducing households’ need to employ migration as an adaptation strategy (Feng & Oppenheimer, 2012; Nawrotzki, Riosmena and Hunter, 2013).

Projections of future climate change suggest that, for Mexico, temperatures will increase (Collins, Knutti, Arblaster et al., 2013) while precipitation will decline (Christensen, Kanikicharla, Aldrian et al., 2013), potentially leading to an increase in frequency and severity of droughts (Wehner, Easterling, Lawrimore et al., 2011). When livelihoods of agriculturally-dependent households are impacted by adverse climate variability and change, they may respond with an increase in migration rates (Black, Adger, Arnell et al., 2011a). Our study suggests that such migrants will be predominantly undocumented. To reduce the number of undocumented border crossings from Mexico, the U.S. government has substantially increased the budget for border control and fortification (Massey and Riosmena, 2010; Orrenius, 2004). However, an increase in border fortification has been shown to be of limited success in deterring undocumented migrations (Massey and Riosmena, 2010). Livelihood-based support programs to assist rural Mexicans in local climate change adaptation efforts may serve as a cost-efficient alternative to border control in decreasing the number of climate related moves. Such programs may include agricultural extension services to disseminate knowledge about the availability and use of drought resistant crop varieties and alternative farming practices (Nawrotzki and Akeyo, 2009; Schroth, Laderach, Dempewolf et al., 2009), subsidize the construction of irrigation systems (Howden, Soussana, Tubiello et al., 2007), or assist households in finding non-agricultural employment to reduce their dependency on climate-sensitive sectors (Macours, Premand and Vakis, 2012).

Conflict of Interest and Funding

No conflict of interest was reported by the authors. The authors gratefully acknowledge support from the Minnesota Population Center (5R24HD041023) and the University of Colorado Population Center (R24 HD066613), funded through grants from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD). In addition, this work received support from the National Science Foundation funded Terra Populus project (NSF Award ACI-0940818).

Acknowledgements

We thank two anonymous reviewers and the journal editor for helpful comments and suggestions on earlier versions of this manuscript. We also express our gratitude to Gina Rummere for her careful editing and suggestions.

Ethics Statement

The analyses described in this paper were performed using secondary data obtained from various publicly available sources as outlined in the Data and Methods section.

References

http://dx.doi.org/10.1007/s11111-013-0191-y

Undocumented migration in response to climate change

http://dx.doi.org/10.1111/imre.12051

http://dx.doi.org/10.1080/15420353.2015.1036484

http://dx.doi.org/10.1080/15420353.2015.1036484

http://dx.doi.org/10.1038/nclimate1832

http://dx.doi.org/10.1016/0305-750X(90)90113-C

http://dx.doi.org/10.2307/2546522

http://dx.doi.org/10.2307/2938462

http://dx.doi.org/10.1007/s11111-010-0119-8

http://www.jstor.org/stable/27645426

http://dx.doi.org/10.1080/1369183X.2014.986079

http://www.jstor.org/stable/2782024

http://www.jstor.org/stable/42863761

http://dx.doi.org/10.1177/0002716210368114

http://dx.doi.org/10.1086/505721

Environmental Change, 21(Supplement 1), S108–S120.
http://dx.doi.org/10.1016/j.gloenvcha.2011.08.004

http://dx.doi.org/10.1175/JTECH-D-11-00103.1

http://dx.doi.org/10.1029/2007GB002947

http://dx.doi.org/10.1038/nclimate2103

http://dx.doi.org/10.1177/1086026612456535

http://dx.doi.org/10.1007/s11113-011-9251-8

http://dx.doi.org/10.1175/2008BAMS2501.1

http://dx.doi.org/10.1175/JHM-D-11-0150.1

http://www.jstor.org/stable/30038985

http://dx.doi.org/10.1111/j.1467-7717.2008.01089.x

http://dx.doi.org/10.1073/pnas.0906865106

http://dx.doi.org/10.1007/s11027-009-9186-5

http://dx.doi.org/10.1029/2009EO110001

http://www.jstor.org/stable/1805591

http://dx.doi.org/10.2307/2983175

http://dx.doi.org/10.1191/1471082X04st069oa

http://dx.doi.org/10.1111/1468-2435.00066

http://dx.doi.org/10.2307/3645924

http://dx.doi.org/10.1093/aje/kwk052

http://dx.doi.org/10.1175/2011JHM1351.1

http://dx.doi.org/10.1080/00220380412331322461

http://dx.doi.org/10.1016/j.jdeveco.2006.03.06

http://dx.doi.org/10.1007/s10584-015-1453-8