Open Journal Systems

Determination of Optimum Annealing Time Durations of Nano Boron Nitride Added MgB2 Superconductors

Asaf Tolga Ulgen

Abstract

In the present study, I have investigated the effect of different annealing time durations of 0.5h, 1h, 2h and 4h (annealing temperature at 700oC) on the electrical, micro structural and superconducting properties of the nano hexagonal boron nitride (hBN) added/doping magnesium diboride (MgB2) superconducting samples. The aim of this work, hBN added MgB2 superconducting bulk samples are determined to find out the optimum sintering time, also investigated how BN addition effects the optimum fabrication conditions. These superconducting samples were prepared by the conventional solid-state reaction method. Experimental techniques of X-ray diffraction (XRD) were used for structural and microstructural examinations. Critical transition temperatures, difference between Tc-onset and Tc-offset, a and c lattice parameter, grain size, bulk density, residual resistivity ratios (RR) and cross-sectional area fractions (AF) of the pure and nano-hBN added MgB2 materials are obtained using a cryostat equipped with a superconducting magnet. All the experimental results notice that the characteristic features improve regularly with the increment in sintering time durations. 


Full Text:

PDF

References

Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J. (2001). Superconductivity at 39 K in magnesium diboride. Nature, 410(6824), 63.

J. Akimitsu, (2001). Symposium on Transition Metal Oxides, Sendai January 10.

Pan, A. V., Zhou, S., Liu, H., Dou, S. (2003). Properties of superconducting MgB2 wires: in situ versus ex situ reaction technique. Superconductor Science and Technology, 16(5), 639.

Shekhar, C., Giri, R., Tiwari, R. S., Srivastava, O. N. (2004). On the synthesis and characterization of La doped MgB2 superconductor. Crystal Research and Technology, 39(8), 718-725.

Yeoh, W. K., Horvat, J., Dou, S. X., Keast, V. (2004). Strong pinning and high critical current density in carbon nanotube doped MgB2. Superconductor Science and Technology, 17(9), S572.

Rafieazad, M., Balcı, Ö., Acar, S., Somer, M. Review on magnesium diboride (MgB2) as excellent superconductor: Effects of the production techniques on the superconducting properties. Bor Dergisi, 2(2), 87-96.

Leiro, J. A., Kokko, K., Kulmala, V. (2004). Polarization dependent X-ray spectra of MgB2. Journal of alloys and compounds, 362(1-2), 139-142.

Cheng, C. H., Zhao, Y., Zhu, X. T., Nowotny, J., Sorrell, C. C., Finlayson, T., Zhang, H. (2003). Chemical doping effect on the crystal structure and superconductivity of MgB2. Physica C: Superconductivity, 386, 588-592.

Dogruer, M., Yildirim, G., Varilci, A., Terzioglu, C. (2013). MgB2 inclusions in Bi-2223 matrix: The evaluation of microstructural, mechanical and superconducting properties of new system, Bi-2223+ MgB2. Journal of Alloys and Compounds, 556, 143-152.

Duz, I., Guner, S. B., Erdem, O., Demir, I., Kapucu, V., Çelik, Ş., Yanmaz, E. (2014). Comparison of levitation forces of bulk MgB2 superconductors produced by nano boron and carbon-doped nano boron. Journal of Superconductivity and Novel Magnetism, 27(10), 2241-2247.

Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., Tajima, S. (2003). Carbon-substituted MgB2 single crystals. Physica C: Superconductivity, 397(1-2), 7-13.

Ansari, I. A. (2018). Study of activation energy and AC-susceptibility for nano-ZnO doped MgB2 superconductor in presence of varying amplitude of applied field. Journal of Materials Science: Materials in Electronics, 29(1), 614-618.

Ulgen, A. T., & Belenli, I. (2017). The Effect of Fe Diffusion on Some Physical and Superconducting Properties of MgB2. Journal of Superconductivity and Novel Magnetism, 30(4), 1089-1095.

Ulgen, A. T. (2017). MgB2 süperiletken külçe malzemesine altın kaplamasının etkileri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 121-128.

Xu, Z., Kong, X., Han, L., Pang, H., Wu, Y., Gao, Z., Li, X. (2017). Elimination of bubbles and improvement of the superconducting properties in MgB2 films annealed using electron beam. Superconductor Science and Technology, 30(3), 035013.

Li, Y. L., Xu, Z., Kong, X. D., Han, L., Li, X. N. (2017). The Fabrication of MgB2 Film and Nano-Bridge by EB and FIB. In Key Engineering Materials (Vol. 723, pp. 415-420). Trans Tech Publications.

Häßler, W., Kováč, P., Scheiter, J., Rosová, A., Pachla, W. (2017). MgB2 Multicore Wire Prepared by IMD Technology—Investigation of the MgB2 Layer Formation During Annealing. IEEE Transactions on Applied Superconductivity, 27(4), 1-4.

Suo, H. L., Lezza, P., Uglietti, D., Beneduce, C., Abacherli, V., Flukiger, R. (2003). Transport critical current densities and n factors in mono-and multifilamentary MgB2/Fe tapes and wires using fine powders. IEEE transactions on applied superconductivity, 13(2), 3265-3268.

Yeoh, W. K., Kim, J. H., Horvat, J., Dou, S. X., Munroe, P. (2006). Improving flux pinning of MgB2 by carbon nanotube doping and ultrasonication. Superconductor Science and Technology, 19(2), L5.

Yamamoto, A., Shimoyama, J. I., Ueda, S., Katsura, Y., Iwayama, I., Horii, S., Kishio, K. (2005). Effects of sintering conditions on critical current properties and microstructures of MgB2 bulks. Physica C: Superconductivity and its applications, 426, 1220-1224.

Xu, X., Kim, J. H., Yeoh, W. K., Zhang, Y., Dou, S. X. (2006). Improved Jc of MgB2 superconductor by ball milling using different media. Superconductor Science and Technology, 19(11), L47.

O'Connor, T. E. (1962). Synthesis of boron nitride. Journal of the American Chemical Society, 84(9), 1753-1754.

Budak, E., Bozkurt, Ç. (2010). Synthesis of hexagonal boron nitride with the presence of representative metals. Physica B: Condensed Matter, 405(22), 4702-4705.

Budak, E., Bozkurt, Ç. (2004). The effect of transition metals on the structure of h-BN intercalation compounds. Journal of Solid State Chemistry, 177(4-5), 1768-1770.

Canfield, P. C., Finnemore, D. K., Bud'Ko, S. L., Ostenson, J. E., Lapertot, G., Cunningham, C. E., Petrovic, C. (2001). Superconductivity in dense MgB2 wires. Physical Review Letters, 86(11), 2423.

Rowell, J. M. (2003). The widely variable resistivity of MgB2 samples. Superconductor science and Technology, 16(6), R17.

Jiang, J., Senkowicz, B. J., Larbalestier, D. C., Hellstrom, E. E. (2006). Influence of boron powder purification on the connectivity of bulk MgB2. Superconductor Science and Technology, 19(8), L33.

Scherrer, P. (1912). Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch (pp. 387-409). Springer, Berlin, Heidelberg.

Warren, B. E. (1941). X-ray diffraction in random layer lattices. Physical Review, 59(9), 693.

Parakkandy, J. M., Shahabuddin, M., Shah, M. S., Alzayed, N. S., Qaid, S. A., Madhar, N. A., Shar, M. A. (2015). Effects of glucose doping on the MgB2 superconductors using cheap crystalline boron. Physica C: Superconductivity and its applications, 519, 137-141.

Huang, M. T., Ishida, H. (2005). Surface study of hexagonal boron nitride powder by diffuse reflectance Fourier transform infrared spectroscopy. Surface and interface analysis, 37(7), 621-627.

Sharma, D., Kumar, J., Vajpayee, A., Kumar, R., Ahluwalia, P. K., & Awana, V. P. S. (2011). Comparative Experimental and Density Functional Theory (DFT) Study of the Physical Properties of MgB2 and AlB2. Journal of superconductivity and novel magnetism, 24(6), 1925-1931.

De Silva, K. S. B., Gambhir, S., Wang, X. L., Xu, X., Li, W. X., Officer, D. L., Dou, S. X. (2012). The effect of reduced graphene oxide addition on the superconductivity of MgB 2. Journal of Materials Chemistry, 22(28), 13941-13946.

Yeoh, W. K., Horvat, J., Kim, J. H., Xu, X., Dou, S. X. (2007). Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB2. Applied physics letters, 90(12), 122502.


DOI: http://dx.doi.org/10.18063/nn.v0i0.437
(141 Abstract Views, 95 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Nanoscience and Nanotechnology