Open Journal Systems

Using CloudSat observations to evaluate cloud top heights from convection parameterization

Guang Jun Zhang, Mingcheng Wang

Abstract

How high convective clouds can go is of great importance to climate. Cloud ice and liquid water that detrain near the top of convective cores are important for the formation of anvil clouds and thus impact cloud radiative forcing and the Earth’s radiation budget. This study uses CloudSat observations to evaluate convective cloud top heights in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM5). Results show that convective cloud top heights in the tropics are much lower than observed by CloudSat, by more than 2 km on average. Temperature and moisture anomalies from climatological means are composited for convective clouds of different heights for both observations and model simulation. It is found that convective environment is warmer and moister, and the anomalies are larger for clouds of higher tops. For a given convective cloud top height, the corresponding atmosphere in CAM5 is more convectively unstable than what the CloudSat observations indicate, suggesting that there is too much entrainment into convective clouds in the model.


Keywords

CloudSat; cloud top heights; satellite data

Full Text:

PDF

References

Bacmeister J T and Stephens G L. (2011). Spatial statistics of likely convective clouds in CloudSat data. Journal of Geophysical Research, 116(D4): D04104. http://dx.doi.org/10.1029/2010jd014444

Betts A K. (1990). Greenhouse warming and the tropical water budget. Bulletin of the American Meteorological Society, 71(10): 1464–1465.

Bony S, Stevens B, Coppin D, et al. (2016). Thermodynamic control of anvil cloud amount. Proceedings of the National Academy of Sciences, 113(32): 8927–8932. http://dx.doi.org/10.1073/pnas.1601472113

Bretherton C S and Park S. (2009). A new moist turbulence parameterization in the community atmosphere model. Journal of Climate, 22(12): 3422–3448. http://dx.doi.org/10.1175/2008jcli2556.1

Dai A and Trenberth K E. (2004). The diurnal cycle and its depiction in the Community Climate System Model. Journal of Climate, 17: 930–951. http://dx.doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2

Gamache J F and Houze R A. (1983). Water budget of a mesoscale convective system in the tropics. Journal of Atmospheric Sciences, 40: 1835–1850. https://doi.org/10.1175/1520-0469(1983)040<1835:WBOAMC>2.0.CO;2

Jiang J H, Su H, Zhai C, et al. (2012). Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. Journal of Geophysical Research, 117(D14): D14105. http://dx.doi.org/10.1029/2011JD017237

Klein S A, Zhang Y, Zelinka M D, et al. (2013). Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. Journal of Geophysical Research, 118(3): 1329–1342. http://dx.doi.org/10.1002/jgrd.50141

Li J-L F, Walliser D E, Chen W T, et al. (2012). An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. Journal of Geophysical Research, 117(D16): D16105. http://dx.doi.org/10.1029/2012JD017640

Lin J-L, Kiladis G N, Mapes B E, et al. (2006). Tropical intraseasonal variability in 14 IPCC AR4 Climate Models. Part I: Convective signals. Journal of Climate, 19: 2665–2690. http://dx.doi.org/10.1175/JCLI3735.1

Lindzen R S. (1990). Some coolness concerning global warming. Bulletin of the American Meteorological Society, 71(3): 288–299. http://dx.doi.org/10.1175/1520-0477(1990)071<0288:SCCGW>2.0.CO;2

Luo Z, Liu G Y and Stephens G L. (2008). CloudSat adding new insight into tropical penetrating convection. Geophysical Research Letters, 35(19): L19819. http://dx.doi.org/10.1029/2008GL035330

Luo Z J, Liu G Y and Stephens G L. (2010). Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophysical Research Letters, 37(9): L09804. http://dx.doi.org/10.1029/2010GL042904

Mace G G, Marchand R, Zhang Q, et al. (2007). Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophysical Research Letters, 34(9): L09808. http://dx.doi.org/10.1029/2006GL029017

Marchand R, Mace G G, Ackerman T, et al. (2008). Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. Journal of Atmospheric and Oceanic Technology, 25: 519–533. http://dx.doi.org/10.1175/2007JTECHA1006.1

Meenu S, Rajeev K, Parameswaran K, et al. (2010). Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. Journal of Geophysical Research, 115(D5): D05205. http://dx.doi.org/10.1029/2009JD011802

Morrison H and Gettelman A. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21: 3642–3659. http://dx.doi.org/10.1175/2008jcli2105.1

Neale R B, Richter J H and Jochum M. (2008). The impact of convection on ENSO: From a delayed oscillator to a series of events. Journal of Climate, 21: 5904–5924. http://dx.doi.org/10.1175/2008jcli2244.1

Park S and Bretherton C S. (2009). The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. Journal of Climate, 22: 3449–3469. http://dx.doi.org/10.1175/2008jcli2557.1

Partain P. (2004). Cloudsat ECMWF-AUX auxiliary data process description and interface control document. Colorado: Colorado State University; [updated 2004 July 30; cited 2017 July 30] Available from: http://cswww.cira.colostate.edu/ICD/ECMWF-AUX/ECMWF-AUX_PDICD_3.0.pdf

Pincus R, Batstone C P, Hofmann R J P, et al. (2008). Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. Journal of Geophysical Research, 113(D14): D14209. http://dx.doi.org/10.1029/2007JD009334

Ramanathan V, Cess R D, Harrison E F, et al. (1989). Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science, 243(4887): 57–63. https://doi.org/10.1126/science.243.4887.57

Ramanathan V and Collins W. (1991). Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351: 27–32. http://dx.doi.org/10.1038/351027a0

Rossow W B and Schiffer R A. (1991). ISCCP cloud data products. Bulletin of the American Meteorological Society, 72(1): 2–20. https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2

Rossow W B and Schiffer R A. (1999). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80(11): 2261–2287. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

Simpson J, Kummerow C, Tao W K, et al. (1996). On the Tropical Rainfall Measuring Mission (TRMM). Meteorology and Atmospheric Physics, 60(1–3): 19–36. http://dx.doi.org/10.1007/BF01029783

Stephens G L, L'Ecuyer T, Forbes R, et al. (2010). Dreary state of precipitation in global models. Journal of Geophysical Research, 115(D24): D24211. http://dx.doi.org/10.1029/2010JD014532

Stephens G L, Vane D G, Boain R J, et al. (2002). The CloudSat Mission and the A-Train, A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83: 1771–1790. http://dx.doi.org/10.1175/BAMS-83-12-1771

Su H, Jiang J H, Zhai C, et al. (2013). Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. Journal of Geophysical Research Atmospheres, 118(7): 2762–2780. http://dx.doi.org/10.1029/2012JD018575

Takahashi H and Luo Z. (2012). Where is the level of neutral buoyancy for deep convection? Geophysical Research Letters, 39(15): L15809. http://dx.doi.org/10.1029/2012GL052638

Takahashi H, Luo Z J and Stephens G L. (2017). Level of neutral buoyancy, deep convective outflow and convective core: New perspectives based on 5-years of CloudSat data. Journal of Geophysical Research Atmospheres, 122(5): 2958–2969. http://dx.doi.org/10.1002/ 2016JD025969

Waliser D E, Li J-L F., Woods C P, et al. (2009). Cloud ice: A climate model challenge with signs and expectations of progress. Journal of Geophysical Research Atmospheres, 114(D8): D00A21. http://dx.doi.org/10.1029/2008JD010015

Wielicki B A, Barkstrom B R, Harrison E F, et al. (1996). Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bulletin of the American Meteorological Society, 77(5): 853–868. https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2

Zhang G J and McFarlane N A. (1995). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmosphere-Ocean, 33(3): 407–446. http://dx.doi.org/ 10.1080/07055900.1995.9649539


DOI: http://dx.doi.org/10.18063/som.v2i2.298
(171 Abstract Views, 145 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Satellite Oceanography and Meteorology