Open Journal Systems

Application and development of new two-dimensional nanomaterials in the field of electrochemistry

Lifeng Gao

Article ID: 766
Vol 1, Issue 1, 2018, Article identifier:

VIEWS - 1068 (Abstract) 372 (PDF)


The new two-dimensional nano-materials represented by graphene have unique structure and excellent electronic properties, and have great application potential in various fields of electrochemistry. This review summarizes the research status and existing problems of new two-dimensional nanomaterials in various fields of electrochemistry (energy storage, energy conversion and electrochemical sensing). The development trend of two-dimensional nanomaterials in the field of electrochemistry is prospected.


New two-dimensional materials; electrochemistry; energy storage; energy conversion

Full Text:


Included Database


Novoselov K S,Geim A K,Morozov S V,et al. Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature,2005,438( 7065) : 197-200.

Geim A K,Novoselov K S. The Rise of Graphene[J]. Nat Mater,2007,6( 3) : 183-191.

Li X,Cai W,An J,et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science,2009,324( 5932) : 1312-1314.

Tan C L,Cao X H,Wu X J,et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials[J]. Chem Rev,2017,117( 9) : 6225-6331.

Zhu Y,Murali S,Stoller M D,et al. Carbon-based Supercapacitors Produced by Activation of Graphene[J]. Science,2011,332( 6037) : 1537-1541.

Zhu C,Liu T,Qian F,et al. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with PeriodicMacropores[J]. Nano Lett,2016,16( 6) : 3448-3456.

Lei Z B,Zhang J T,Zhang L L,et al. Functionalization of Chemically Derived Graphene for Improving Its ElectrocapacitiveEnergy Storage Properties[J]. Energy Environ Sci,2016,9( 6) : 1891-1930.

Rao C N R,Gopalakrishnan K,Govindaraj A. Synthesis,Properties and Applications of Graphene Doped with Boron,Nitrogen and Other Elements[J]. Nano Today,2014,9( 3) : 324-343.

Li M,Tang Z,Leng M,et al. Flexible Solid-State Supercapacitor Based on Graphene-based Hybrid Films[J]. Adv FunctMater,2014,24( 47) : 7495-7502.

Lehtimaki S,Suominen M,Damlin P,et al. Preparation of Supercapacitors on Flexible Substrates with ElectrodepositedPEDOT / Graphene Composites[J]. ACS Appl Mater Interfaces,2015,7( 40) : 22137-22147.

Fan Z,Yan J,Zhi L,et al. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode inSupercapacitors[J]. Adv Mater,2010,22( 33) : 3723-3728.

Xu Y,Lin Z,Huang X,et al. Functionalized Graphene Hydrogel-based High-Performance Supercapacitors[J]. Adv Mater,2013,25( 40) : 5779-5784.

Gao L,Gan S,Li H,et al. Self-Assembling Graphene-anthraquinone-2-sulphonate Supramolecular Nanostructures withEnhanced Energy Density for Supercapacitors[J]. Nanotechnology,2017,28( 27) : 275602.

Lu X,Li L,Song B,et al. Mechanistic Investigation of the Graphene Functionalization Using p-Phenylenediamine and ItsApplication for Supercapacitors[J]. Nano Energy,2015,17: 160-170.

Jana M,Saha S,Khanra P,et al. Non-covalent Functionalization of Reduced Graphene Oxide Using Sulfanilic AcidAzocromotrop and Its Application as a Supercapacitor Electrode Material[J]. J Mater Chem A,2015,3( 14) : 7323-7331.

Liu J,Zhang L,Wu H B,et al. High-performance Flexible Asymmetric Supercapacitors Based on a New Graphene Foam/Carbon Nanotube Hybrid Film[J]. Energy Environ Sci,2014,7( 11) : 3709-3719.

Tang Z,Tang C,Gong H. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni( OH)2/ CarbonNanotube Electrodes[J]. Adv Funct Mater,2012,22( 6) : 1272-1278

Song Z,Fan Y,Sun Z,et al. A New Strategy for Integrating Superior Mechanical Performance and High Volumetric EnergyDensity into a Janus Graphene Film for Wearable Solid-State Supercapacitors[J]. J Mater Chem A,2017,5 ( 39) : 20797-20807.

Zhang G,Liu H,Qu J,et al. Two-dimensional Layered Mo S2: Rational Design,Properties and Electrochemical Applications[J]. Energy Environ Sci,2016,9( 4) : 1190-1209.

Feng J,Sun X,Wu C,et al. Metallic Few-layered VS2Ultrathin Nanosheets: High Two-dimensional Conductivity forIn-plane Supercapacitors[J]. J Am Chem Soc,2011,133( 44) : 17832-17838.

Ratha S,Rout C S. Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide HybridsSynthesized by a Facile Hydrothermal Method[J]. ACS Appl Mater Interfaces,2013,5( 21) : 11427-11433.

Peng L,Peng X,Liu B,et al. Ultrathin Two-dimensional Mn O2/ Graphene Hybrid Nanostructures for High-Performance,Flexible Planar Supercapacitors[J]. Nano Lett,2013,13( 5) : 2151-1257.

Xiang K,Xu Z,Qu T,et al. Two Dimensional Oxygen-Vacancy-rich Co3O4Nanosheets with Excellent SupercapacitorPerformances[J]. Chem Commun( Camb) ,2017,53( 92) : 12410-12413.

Song D,Zhu J,Li J,et al. Free-standing Two-dimensional Mesoporous Zn Co2O4Thin Sheets Consisting of 3D UltrathinNanoflake Array Frameworks for High Performance Asymmetric Supercapacitor[J]. Electrochim Acta,2017,257: 455-464.

Cao H,Wu N,Liu Y,et al. Facile Synthesis of Rod-like Manganese Molybdate Crystallines with Two-dimentionalNanoflakes for Supercapacitor Application[J]. Electrochim Acta,2017,225: 605-613.

Chen H,Hu L,Chen M,et al. Nickel-Cobalt Layered Double Hydroxide Nanosheets for High-performance SupercapacitorElectrode Materials[J]. Adv Funct Mater,2014,24( 7) : 934-942.

Xie J,Sun X,Zhang N,et al. Layer-by-layer β-Ni( OH)2/ Graphene Nanohybrids for Ultraflexible All-solid-State Thin-FilmSupercapacitors with High Electrochemical Performance[J]. Nano Energy,2013,2( 1) : 65-74.

Dong X,Wang L,Wang D,et al. Layer-by-Layer Engineered Co-Al Hydroxide Nanosheets/Graphene Multilayer Films asFlexible Electrode for Supercapacitor[J]. Langmuir,2012,28( 1) : 293-298.

Gao Z,Wang J,Li Z,et al. Graphene Nanosheet/Ni2 +/ Al3 +Layered Double-Hydroxide Composite as a Novel Electrode fora Supercapacitor[J]. Chem Mater,2011,23( 15) : 3509-3516.

Xiong G,He P,Liu L,et al. Plasma-Grown Graphene Petals Templating Ni-Co-Mn Hydroxide Nanoneedles for High-Rateand Long-Cycle-Life Pseudocapacitive Electrodes[J]. J Mater Chem A,2015,3( 45) : 22940-22948.

Choi D,Blomgren G E,Kumta P N. Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium NitrideSupercapacitors[J]. Adv Mater,2006,18( 9) : 1178-1182.

Krishnamoorthy K,Pazhamalai P,Sahoo S,et al. Titanium Carbide Sheet Based High Performance Wire Type Solid StateSupercapacitors[J]. J Mater Chem A,2017,5( 12) : 5726-5736.

Ghidiu M,Lukatskaya M R,Zhao M Q,et al. Conductive Two-Dimensional Titanium Carbide‘Clay’with High VolumetricCapacitance[J]. Nature,2014,516( 7529) : 78-81.

Ling Z,Ren C E,Zhao M Q,et al. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance[J].PNAS,2014,111( 47) : 16676-16681.

Boota M,Anasori B,Voigt C,et al. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of PyrroleBetween the Layers of 2D Titanium Carbide( MXene) [J]. Adv Mater,2016,28( 7) : 1517-1522.

Li H,Hou Y,Wang F,et al. Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted bySolution Processable MXene and Electrochemically Exfoliated Graphene[J]. Adv Energy Mater,2017,7 ( 4 ) : 1601847-1601853.

Yan P,Zhang R,Jia J,et al. Enhanced Supercapacitive Performance of Delaminated Two-dimensional Titanium Carbide/Carbon Nanotube Composites in Alkaline Electrolyte[J]. J Power Sources,2015,284: 38-43.

Lukatskaya M R,Kota S,Lin Z,et al. Ultra-high-rate Pseudocapacitive Energy Storage in Two-dimensional Transition MetalCarbides[J]. Nat Energy,2017,2( 8) : 17105.

Krishnamoorthy K,Thangavel S,Chelora Veetil J,et al. Graphdiyne Nanostructures as a New Electrode Material forElectrochemical Supercapacitors[J]. Int J Hydrogen Energy,2016,41( 3) : 1672-1678.

Tahir M,Cao C,Butt F K,et al. Tubular Graphitic-C3N4: A Prospective Material for Energy Storage and GreenPhotocatalysis[J]. J Mater Chem A,2013,1( 44) : 13949.

.Wu C,Lu X,Peng L,et al. Two-dimensional Vanadyl Phosphate Ultrathin Nanosheets for High Energy Density and FlexiblePseudocapacitors[J]. Nat Commun,2013,4: 2431.

Wang L,Han Y,Feng X,et al. Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors[J]. Coordin Chem Rev,2016,307: 361-381.

Bonaccorso F,Colombo L,Yu G,et al. Graphene,Related Two-Dimensional Crystals,and Hybrid Systems for EnergyConversion and Storage[J]. Science,2015,347( 6217) : 1246501.

Ren W,Li D J,Liu H. Carbon Nanomaterials with Different Dimensions for Anode of Li-Ion Batteries[J]. Key Eng Mater,2012,519: 118-123.

Jiao L S,Liu J Y,Li H Y,et al. Facile Synthesis of Reduced Graphene Oxide-Porous Silicon Composite as Superior AnodeMaterial for Lithium-Ion Battery Anodes[J]. J Power Sources,2016,315: 9-15.

Jiao L,Sun Z,Li H,et al. Collector and Binder-free High Quality Graphene Film as a High Performance Anode forLithium-Ion Batteries[J]. RSC Adv,2017,7( 4) : 1818-1821.

Peng L,Xiong P,Ma L,et al. Holey Two-dimensional Transition Metal Oxide Nanosheets for Efficient Energy Storage[J].Nat Commun,2017,8: 15139.

Chang K,Chen W X,Li H,et al. Microwave-assisted Synthesis of Sn S2/ Sn O2Composites by l-Cysteine and TheirElectrochemical Performances when Used as Anode Materials of Li-Ion Batteries[J]. Electrochim Acta,2011,56( 7) : 2856-2861.

Seo J W,Jang J T,Park S W,et al. Two-Dimensional Sn S2Nanoplates with Extraordinary High Discharge Capacity forLithium Ion Batteries[J]. Adv Mater,2008,20( 22) : 4269-4273.

Chang K,Chen W. L-Cysteine-assisted Synthesis of Layered Mo S2/ Graphene Composites with Excellent ElectrochemicalPerformances for Lithium Ion Batteries[J].ACS Nano,2011,5( 6) : 4720-4728.

Jing Y,Zhou Z,Cabrera C R,et al. Metallic VS2Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries[J].J Phys Chem C,2013,117( 48) : 25409-25413.

Bhandavat R,David L,Singh G. Synthesis of Surface-Functionalized WS2Nanosheets and Performance as Li-Ion BatteryAnodes[J]. J Phys Chem Lett,2012,3( 11) : 1523-1530.

Deng S,Wang L,Hou T,et al. Two-Dimensional Mn O2as a Better Cathode Material for Lithium Ion Batteries[J]. J PhysChem C,2015,119( 52) : 28783-28788.

Li N,Zhou G,Fang R,et al. Ti O2/ Graphene Sandwich Paper as an Anisotropic Electrode for High Rate Lithium IonBatteries[J]. Nanoscale,2013,5( 17) : 7780-7784.

Liu Y,Wang W,Gu L,et al. Flexible Cu O Nanosheets/Reduced-Graphene Oxide Composite Paper: Binder-free Anode forHigh-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2013,5( 19) : 9850-9855.

Yu S H,Lee S H,Lee D J,et al. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes[J].Small,2016,12( 16) : 2146-2172.

Hu Y Y,Liu Z,Nam K W,et al. Origin of Additional Capacities in Metal Oxide Lithium-Ion Battery Electrodes[J]. NatMater,2013,12( 12) : 1130-1136.

Sun D,Wang M,Li Z,et al. Two-dimensional Ti3C2as Anode Material for Li-Ion Batteries[J]. Electrochem Commun,2014,47: 80-83.

Naguib M,Come J,Dyatkin B,et al. MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries[J].Electrochem Commun,2012,16( 1) : 61-64.

Naguib M,Halim J,Lu J,et al. New Two-dimensional Niobium and Vanadium Carbides as Promising Materials for Li-ionBatteries[J].J Am Chem Soc,2013,135( 43) : 15966-15969.

Liu Y,Wang W,Ying Y,et al. Binder-free layered Ti3C2/ CNTs Nanocomposite Anodes with Enhanced Capacity and Long-Cycle Life for Lithium-Ion Batteries[J]. Dalton Trans,2015,44( 16) : 7123-7126.

Luo J,Tao X,Zhang J,et al. Sn( 4) ( + ) Ion Decorated Highly Conductive Ti3C2MXene: Promising Lithium-Ion Anodeswith Enhanced Volumetric Capacity and Cyclic Performance[J]. ACS Nano,2016,10( 2) : 2491-2499.

Park C M,Sohn H J. Black Phosphorus and Its Composite for Lithium Rechargeable Batteries[J]. Adv Mater,2007,19( 18) : 2465-2468.

Chowdhury C,Karmakar S,Datta A. Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and NaIon Batteries[J]. ACS Energy Lett,2016,1( 1) : 253-259.

Wang S,Wang Q,Shao P,et al. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets asCathode Materials for Lithium-Ion Batteries[J]. J Am Chem Soc,2017,139( 12) : 4258-4261.

Karmakar S,Chowdhury C,Datta A. Two-Dimensional Group IV Monochalcogenides: Anode Materials for Li-Ion Batteries[J]. J Phys Chem C,2016,120( 27) : 14522-14530.

Zhang N,Ma W,Wu T,et al. Edge-rich Mo S2Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst forElectrochemical Hydrogen Evolution[J]. Electrochim Acta,2015,180: 155-163.

Zhang N,Gan S,Wu T,et al. Growth Control of Mo S2Nanosheets on Carbon Cloth for Maximum Active Edges Exposed: An Excellent Hydrogen Evolution 3D Cathode[J]. ACS Appl Mater Interfaces,2015,7( 22) : 12193-12202.

Zhang N,Ma W,Jia F,et al. Controlled Electrodeposition of Co Mo Sxon Carbon Cloth: A 3D Cathode for Highly-EfficientElectrocatalytic Hydrogen Evolution[J]. Int J Hydrogen Energ,2016,41( 6) : 3811-3819.

Xie J,Zhang H,Li S,et al. Defect-rich Mo S2Ultrathin Nanosheets with Additional Active Edge Sites for EnhancedElectrocatalytic Hydrogen Evolution[J]. Adv Mater,2013,25( 40) : 5807-5813.

Seh Z W,Fredrickson K D,Anasori B,et al. Two-Dimensional Molybdenum Carbide ( MXene ) as an EfficientElectrocatalyst for Hydrogen Evolution[J]. ACS Energy Lett,2016,1( 3) : 589-594.

Huynh M,Shi C,Billinge S J,et al. Nature of Activated Manganese Oxide for Oxygen Evolution[J]. J Am Chem Soc,2015,137( 47) : 14887-14904.

Mc Crory C C,Jung S,Ferrer I M,et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving ReactionElectrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc,2015,137( 13) : 4347-4357.

Burke M S,Enman L J,Batchellor A S,et al. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and( Oxy) hydroxides: Activity Trends and Design Principles[J]. Chem Mater,2015,27( 22) : 7549-7558.

Candelaria S L,Bedford N M,Woeh T J l,et al. Multi-Component Fe! Ni Hydroxide Nanocatalyst for Oxygen Evolution andMethanol Oxidation Reactions Under Alkaline Conditions[J]. ACS Catal,2016,7( 1) : 365-379.

Dutta S,Indra A,Feng Y,et al. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst forSuperior Water Splitting Activity[J]. ACS Appl Mater Interfaces,2017,9( 39) : 33766-33774.

Wang Z,Li J,Tian X,et al. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for OxygenEvolution Reaction[J]. ACS Appl Mater Interfaces,2016,8( 30) : 19386-19392.

Lu Z,Qian L,Tian Y,et al. Ternary Ni Fe Mn Layered Double Hydroxides as Highly-Efficient Oxygen Evolution Catalysts[J]. Chem Commun,2016,52( 5) : 908-911.

Hou Y,Lohe M R,Zhang J,et al. Vertically Oriented Cobalt Selenide/Ni Fe Layered-double-hydroxide NanosheetsSupported on Exfoliated Graphene Foil: An Efficient 3D Electrode for Overall Water Splitting[J]. Energy Environ Sci,2016,9( 2) : 478-483.

Xu K,Chen P,Li X,et al. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation[J]. JAm Chem Soc,2015,137( 12) : 4119-4125.

Zhang W,Zhou K. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation[J]. Small,2017,13( 32) .

Zou X,Huang X,Goswami A,et al. Cobalt-embedded Nitrogen-rich Carbon Nanotubes Efficiently Catalyze HydrogenEvolution Rreaction at All p H Values[J]. Angew Chem Int Ed Engl,2014,53( 17) : 4372-4376.

Ma W,Han D,Zhou M,et al. Ultrathin g-C3N4/ Ti O2Composites as Photoelectrochemical Elements for the Real-TimeEvaluation of Global Antioxidant Capacity[J]. Chem Sci,2014,5( 10) : 3946-3951.

Ma W,Wang L,Zhang N,et al. Biomolecule-free,Selective Detection of o-Diphenol and Its Derivatives with WS2/ Ti O2-based Photoelectrochemical Platform[J]. Anal Chem,2015,87( 9) : 4844-4850.

Wang L,Ma W,Gan S,et al. Engineered Photoelectrochemical Platform for Rational Global Antioxidant Capacity EvaluationBased on Ultrasensitive Sulfonated Graphene-Ti O2Nanohybrid[J]. Anal Chem,2014,86( 20) : 10171-10178.

Huang K J,Wang L,Li J,et al. Electrochemical Sensing Based on Layered Mo S2Graphene Composites[J]. Sensors ActuatB-Chem,2013,178: 671-677.

Bakker E,Telting-Diaz M. Electrochemical Sensors[J]. Anal Chem,2002,74( 12) : 2781-2800.

Zhu C,Yang G,Li H,et al. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures[J]. AnalChem,2015,87( 1) : 230-249.

Chen H,M ller M B,Gilmore K J,et al. Mechanically Strong,Electrically Conductive,and Biocompatible Graphene Paper[J]. Adv Mater,2008,20( 18) : 3557-3561.

Jiang Y,Zhang Q,Li F,et al. Glucose Oxidase and Graphene Bionanocomposite Bridged by Ionic Liquid Unit for GlucoseBiosensing Application[J]. Sens Actuators B,2012,161( 1) : 728-733.

Ma W,Lv X,Han D,et al. Decoration of Electro-reduced Graphene Oxide with Uniform Gold Nanoparticles Based on in situDiazonium Chemistry and Their Application in Methanol Oxidation[J]. J Electroanal Chem,2013,690: 111-116.

Zhang W,Li F,Hu Y,et al. Perylene Derivative-Bridged Au Graphene Nanohybrid for Label-Free Hp DNA Biosensor[J]. JMater Chem B,2014,2( 20) : 3142-3148.

Zhong L,Gan S,Fu X,et al. Electrochemically Controlled Growth of Silver Nanocrystals on Graphene Thin Film andApplications for Efficient Nonenzymatic H2O2Biosensor[J]. Electrochim Acta,2013,89: 222-228.

Wang Y H,Huang K J,Wu X. Recent Advances in Transition-Metal Dichalcogenides Based Electrochemical Biosensors: AReview[J]. Biosens Bioelectron,2017,97: 305-316.

Wu S,Zeng Z,He Q,et al. Electrochemically Reduced Single-Layer Mo S( 2) Nanosheets: Characterization,Properties,andSensing Applications[J]. Small,2012,8( 14) : 2264-2270.

(1068 Abstract Views, 372 PDF Downloads)


  • There are currently no refbacks.

Copyright (c) 2018 Lifeng Gao

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.