Open Journal Systems

Designing Paste Thickeners for Copper Flotation Tailings, Using Bed depth Scale-up Factor

Majid Unesi, Mohammad Noaparast, Sied Ziaedin Shafaei, Esmaeil Jorjani, Mahdi Yaghobi Moghaddam, Hadi Abdollahi

Article ID: 378
Vol 2, Issue 1, 2018, Article identifier:

VIEWS - 686 (Abstract) 698 (PDF)


Aim:The paste thickener could increase the water recovery and reduce the environmental impacts in tailings dam. The present work aimed to find the appropriate scale-up factor for bed depth to design paste thickener for copper tailings, using a lab glass cylinder and an operating pilot column. The thickening tests were carried out on the flotation tailing samples obtained from the Sarcheshmeh and Miduk copper mines located in Iran. Based on the industrial conditions, the values of influential parameters for paste thickener used in these experiments were pH=11 and feed solid=10 %. Flocculant type was NF43U and used as 25g/t with dosage of 0.25 gt. The unit area of Sarcheshmeh and Miduk paste thickeners were designed as 0.057 and 0.047m2/t/day, respectively. Based on the dry feed rates to each paste thickener as 7920 and 4320 t/day, the thickener's diameters were determined as 23.9 and 16.1 meters which are similar to the actual thickener’s diameters (24 and 16 meters), respectively. In addition to unit area, the bed depth is also important in the paste thickeners design. Hence, the ratio of industrial to lab unit bed volume for Sarcheshmeh paste thickener was obtained 75 which was equal to the ratio of industrial to lab bed depth (bed depth scale-up factor exclusively for copper flotation tailings). This procedure was validated by using the Miduk sample. The bed depth in the paste thickeners was determined as 7.5 meters, by using the bed depth scale-up factor which was comparable to the actual bed depth (8 meters). This research confirmed that the bed depth scale-up factor is able to correctly determine the bed depth of industrial paste thickeners for copper tailings. 


Paste thickener; bed depth scale-up factor; copper tailings; solid flux

Full Text:


Included Database


Jewell, R., & Fourie, A. (2006). Paste and Thickened Tailings–A Guide Australia Centre for Geomechanics, Perth, Western Australia, 6.

Slottee, J., & Johnson, J. (2009). Paste thickener design and operation selected to achieve downstream requirements, 69-76.

Sofra, F., & Boger, D. (2001). Slope Prediction for thickened tailings and paste, tailings and mine waste, Rotterdam, 75-83.

Newman, P., & Landriault, D. (1997). The use of paste technology in the surface disposal of mineral waste, Birmingham, 55.

Arbuthnot, I., Garrway, B., Triglavcanin, R., Edwards, T., Colwell, D.K., & Roberts, K., (2005). Designing for paste thickening, Perth, Australia, 597.

Meggyes, T., & Debreczeni, A. (2006). Paste technology for tailings management. Land Contamination & Reclamation, 14, 815-27.

Unesi, M., Noaparast, M., Shafaei, S.Z., & Jorjani, E. (2014). The Effects of Ore Properties on the Characterization of Suspension in Settling and Compression. International Journal of Mining & Geo-Engineering, 48, 101-14.

Zlokarnik, M. (2006). Scale-up in chemical engineering, Germany, John Wiley & Sons.

Tarleton, S., & Wakman, R. (2011). Solid/liquid separation: scale-up of industrial equipment, Elsevier.

Coe, H., & Clevenger, G. (1916). Methods for determining the capacities of slime thickening tanks. Transaction AIME, 55, 356.

Kynch, G.J. (1952), A theory of sedimentation. Trans. Faraday Society., 48, 166-176.

Talmage, W., & Fitch, E. (1955). Determining thickener unit areas. Industrial & Engineering Chemistry, 47, 38-41.

Yoshioka, N., Hotta, Y., Tanaka, S., Naito, S., & Tsugami, S. (1957), Continuous thickening of homogeneous flocculated slurries, Chemical Engineering, 21, 66-74.

Wilhelm, J., & Naide, Y. (1981), Sizing and operating continuous thickeners. Mining Engineering, 33, 1710-1718.

Dahlstrom, D., & Fitch, E. (1985), Mineral Processing Handbook. New York.

Yalcin, T. (1988), Thickening. Bulletin of the Canadian Institute of Metallurgy, 81, 910.

Kelly, E.G., & Spottiswood, D.J. (1982), Introduction to mineral processing. Wiley New York.

Buscall, R., & White, L.R. (1987). The consolidation of concentrated suspensions. Part 1. The theory of sedimentation. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, 873-891.

Landman, K., White, L., & Buscall, R. (1988). The continuous flow gravity thickener: Steady state behavior. AIChE journal, 34, 239-52.

Green, M.D. (1997). Characterisation of suspensions in settling and compression. Australia University of Melbourne.

Garrido, P., Concha, F., & Burger, R. (2003). Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions. International Journal of Mineral Processing, 72, 57-74.

De Kretser, R.G., Boger, D., & Scales, P.J. (2003). Compressive rheology: an overview. Rheology Reviews, 125-66.

Garrido, P., Burger, R., Concha, F., & Burger, R. (2003) Software for the design and simulation of gravity thickeners. Minerals engineering, 16, 85-92.

Usher, S.P., & Scales, P.J. (2005). Steady state thickener modelling from the compressive yield stress and hindered settling function. Chemical Engineering Journal, 111, 253-261.

Gladman, B.R. (2005). The effect of shear on dewatering of flocculated suspensions. Australia University of Melbourne.

Gladman, B.R., Rudman, M., & Scales, P.J. (2010). Experimental validation of a 1-D continuous thickening model using a pilot column. Chemical Engineering Science, 2010, 65, 3937-3946.

Zhang, Y., Martin, A., & Grassia, P. (2013). Prediction of thickener performance with aggregate densification. Chemical Engineering Science, 101, 346-358.

Zhang, Y., Martin, A., & Grassia, P. (2013). Mathematical modelling of time-dependent densified thickeners. Chemical Engineering Science, 99, 103-112.


Unesi, M., Noaparast, M., Shafaei, S.Z., & Jorjani, E. (2014). Modeling the effects of ore properties on water recovery in the thickening process. International Journal of Minerals, Metallurgy, and Materials, 21, 851-861.

Ramin, E., Flores-Aslina, X., Sin, G., Gerbaey, K.V., Jeppsson, U., & Mikkelsen, P.S. (2014). Influence of selecting secondary settling tank sub-models on the calibration of WWTP models–A global sensitivity analysis using BSM2. Chemical Engineering Journal, 241, 28-34.

Betancourt, F., Concha, F., & Sbarbaro, D. (2013). Simple mass balance controllers for continuous sedimentation. Computers & Chemical Engineering, 54, 34-43.

Diehl, S., & Faras, S. (2013). Control of an ideal activated sludge process in wastewater treatment via an ODE–PDE model. Journal of Process Control, 23, 359-381.

Green, D.W & Perry, R.H. (2008). Perrys chemical engineers handbook, 8th edition, New York.

Turner, J. P. S. & Glasser, D. (1976). Continuous thickening in a pilot plant. Industrial & Engineering Chemistry Fundamentals, 15(1), 23-30.

Gupta, A. & Yan, D.S. (2006). Introduction to Mineral Processing Design and Operation, Perth, Australia.

(686 Abstract Views, 698 PDF Downloads)


  • There are currently no refbacks.

Copyright (c) 2018 Nanoscience and Nanotechnology