Designing Paste Thickeners for Copper Flotation Tailings, Using Bed depth Scale-up Factor
Vol 2, Issue 1, 2018, Article identifier:
VIEWS - 686 (Abstract) 698 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Jewell, R., & Fourie, A. (2006). Paste and Thickened Tailings–A Guide Australia Centre for Geomechanics, Perth, Western Australia, 6.
Slottee, J., & Johnson, J. (2009). Paste thickener design and operation selected to achieve downstream requirements, 69-76.
Sofra, F., & Boger, D. (2001). Slope Prediction for thickened tailings and paste, tailings and mine waste, Rotterdam, 75-83.
Newman, P., & Landriault, D. (1997). The use of paste technology in the surface disposal of mineral waste, Birmingham, 55.
Arbuthnot, I., Garrway, B., Triglavcanin, R., Edwards, T., Colwell, D.K., & Roberts, K., (2005). Designing for paste thickening, Perth, Australia, 597.
Meggyes, T., & Debreczeni, A. (2006). Paste technology for tailings management. Land Contamination & Reclamation, 14, 815-27.
Unesi, M., Noaparast, M., Shafaei, S.Z., & Jorjani, E. (2014). The Effects of Ore Properties on the Characterization of Suspension in Settling and Compression. International Journal of Mining & Geo-Engineering, 48, 101-14.
Zlokarnik, M. (2006). Scale-up in chemical engineering, Germany, John Wiley & Sons.
Tarleton, S., & Wakman, R. (2011). Solid/liquid separation: scale-up of industrial equipment, Elsevier.
Coe, H., & Clevenger, G. (1916). Methods for determining the capacities of slime thickening tanks. Transaction AIME, 55, 356.
Kynch, G.J. (1952), A theory of sedimentation. Trans. Faraday Society., 48, 166-176.
Talmage, W., & Fitch, E. (1955). Determining thickener unit areas. Industrial & Engineering Chemistry, 47, 38-41.
Yoshioka, N., Hotta, Y., Tanaka, S., Naito, S., & Tsugami, S. (1957), Continuous thickening of homogeneous flocculated slurries, Chemical Engineering, 21, 66-74.
Wilhelm, J., & Naide, Y. (1981), Sizing and operating continuous thickeners. Mining Engineering, 33, 1710-1718.
Dahlstrom, D., & Fitch, E. (1985), Mineral Processing Handbook. New York.
Yalcin, T. (1988), Thickening. Bulletin of the Canadian Institute of Metallurgy, 81, 910.
Kelly, E.G., & Spottiswood, D.J. (1982), Introduction to mineral processing. Wiley New York.
Buscall, R., & White, L.R. (1987). The consolidation of concentrated suspensions. Part 1. The theory of sedimentation. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, 873-891.
Landman, K., White, L., & Buscall, R. (1988). The continuous flow gravity thickener: Steady state behavior. AIChE journal, 34, 239-52.
Green, M.D. (1997). Characterisation of suspensions in settling and compression. Australia University of Melbourne.
Garrido, P., Concha, F., & Burger, R. (2003). Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions. International Journal of Mineral Processing, 72, 57-74.
De Kretser, R.G., Boger, D., & Scales, P.J. (2003). Compressive rheology: an overview. Rheology Reviews, 125-66.
Garrido, P., Burger, R., Concha, F., & Burger, R. (2003) Software for the design and simulation of gravity thickeners. Minerals engineering, 16, 85-92.
Usher, S.P., & Scales, P.J. (2005). Steady state thickener modelling from the compressive yield stress and hindered settling function. Chemical Engineering Journal, 111, 253-261.
Gladman, B.R. (2005). The effect of shear on dewatering of flocculated suspensions. Australia University of Melbourne.
Gladman, B.R., Rudman, M., & Scales, P.J. (2010). Experimental validation of a 1-D continuous thickening model using a pilot column. Chemical Engineering Science, 2010, 65, 3937-3946.
Zhang, Y., Martin, A., & Grassia, P. (2013). Prediction of thickener performance with aggregate densification. Chemical Engineering Science, 101, 346-358.
Zhang, Y., Martin, A., & Grassia, P. (2013). Mathematical modelling of time-dependent densified thickeners. Chemical Engineering Science, 99, 103-112.
Unesi, M., Noaparast, M., Shafaei, S.Z., & Jorjani, E. (2014). THE ROLE OF ORE PROPERTIES IN THICKENING PROCESS. PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 50, 783-794.
Unesi, M., Noaparast, M., Shafaei, S.Z., & Jorjani, E. (2014). Modeling the effects of ore properties on water recovery in the thickening process. International Journal of Minerals, Metallurgy, and Materials, 21, 851-861.
Ramin, E., Flores-Aslina, X., Sin, G., Gerbaey, K.V., Jeppsson, U., & Mikkelsen, P.S. (2014). Influence of selecting secondary settling tank sub-models on the calibration of WWTP models–A global sensitivity analysis using BSM2. Chemical Engineering Journal, 241, 28-34.
Betancourt, F., Concha, F., & Sbarbaro, D. (2013). Simple mass balance controllers for continuous sedimentation. Computers & Chemical Engineering, 54, 34-43.
Diehl, S., & Faras, S. (2013). Control of an ideal activated sludge process in wastewater treatment via an ODE–PDE model. Journal of Process Control, 23, 359-381.
Green, D.W & Perry, R.H. (2008). Perrys chemical engineers handbook, 8th edition, New York.
Turner, J. P. S. & Glasser, D. (1976). Continuous thickening in a pilot plant. Industrial & Engineering Chemistry Fundamentals, 15(1), 23-30.
Gupta, A. & Yan, D.S. (2006). Introduction to Mineral Processing Design and Operation, Perth, Australia.
DOI: http://dx.doi.org/10.18063/nn.v2i1.378
(686 Abstract Views, 698 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Nanoscience and Nanotechnology