Open Journal Systems

Cytotoxic Effect of Chitosan Nanoparticles on Normal Human Dental Pulp Cells

Rami Alhomrany, Chang Zhang, Laisheng Chou

Article ID: 940
Vol 3, Issue 1, 2019, Article identifier:

VIEWS - 852 (Abstract) 217 (PDF)


 Introduction: Recent in vitro studies have shown that chitosan nanoparticles could enhance the antimicrobial activity of several dental materials. However, the biocompatibility of these nanoparticles with normal human cells is still controversial. The aim of this study was to evaluate the potential toxicity of various sizes and concentrations of chitosan nanoparticles cultured with normal human dental pulp cells. Methods: Normal human dental pulp cells were derived from human dental pulp tissues and cultured with (50-67) nm and (318-350) nm chitosan nanoparticles in concentrations: 0.2 mg/mL, 0.5 mg/mL, 1 mg/mL, and 2 mg/mL as study groups, and 0 mg/mL as a control. The cell attachment efficiency for each group was assessed at 16 hours. The proliferation rate and cell viability were evaluated at days 7 and 14. Both, attachment efficiency and proliferation rate were assessed by measuring the optical density of crystal violet stained cells. The cell viability was determined by the activity of the mitochondrial dehydrogenase enzyme. Statistical analysis was performed using One-Way ANOVA and post hoc Tukey test. Results: All concentrations of the (50-67) nm group significantly reduced cell attachment efficiency in comparison with the control (p<0.01) and with the (318-350) nm group (p<0.01). All concentrations of both groups, (50-67) nm and (318-350) nm, significantly reduced cell proliferation and cell viability compared to the control in dose-dependent and size-associated manners. (p<0.01).    Conclusion: Chitosan nanoparticles exhibit a cytotoxic effect on normal human dental pulp cells


Chitosan, nanoparticles, dental pulp cells, proliferation, viability

Full Text:



Agarwal, T., Narayan, R., Maji, S., Behera, S., Kulanthaivel, S., Maiti, T. K., … Giri, S. (2016).

Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. International Journal of Biological Macromolecules, 93, 1499–1506.

Aliasghari, A., Khorasgani, M. R., Vaezifar, S., & Rahimi, F. (2016). Evaluation of antibacterial efficiency of chitosan and chitosan nanoparti - cles on cariogenic streptococci : an in vitro study, 8(2), 93–100.

Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., & Domard, A. (2007). The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 28(24), 3478–3488.

Chavez de Paz, L. E., Resin, A., Howard, K. A., Sutherland, D. S., & Wejse, P. L. (2011). Antimicrobial Effect of Chitosan Nanoparticles on Streptococcus mutans Biofilms. Applied and Environmental Microbiology, 77(11), 3892–3895.

Chen, Z., Cao, S., Wang, H., Li, Y., Kishen, A., & Deng, X. (2015). Biomimetic Remineralization of Demineralized Dentine Using Scaffold of CMC / ACP Nanocomplexes in an In Vitro Tooth Model of Deep Caries, (Mid), 1–19.

Del Carpio-Perochena, A., Bramante, C. M., Duarte, M. A., de Moura, M. R., Aouada, F. A., & Kishen, A. (2015). Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod, 40(3), 195–201.

del Carpio-Perochena, A., Kishen, A., Felitti, R., Bhagirath, A. Y., Medapati, M. R., Lai, C., & Cunha, R. S. (2017). Antibacterial Properties of Chitosan Nanoparticles and Propolis Associated with Calcium Hydroxide against Single- and Multispecies Biofilms: An In Vitro and In Situ Study. Journal of Endodontics, 43(8), 1332–1336.

Del Carpio-Perochena, A., Kishen, A., Shrestha, A., & Bramante, C. M. (2015). Antibacterial Properties Associated with Chitosan Nanoparticle Treatment on Root Dentin and 2 Types of Endodontic Sealers. Journal of Endodontics, 41(8), 1353–1358.

Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44(2–3), 65–73.

Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties, 2012.

Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., … Kurita, A. (2002). Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials, 23(3), 833–840.

Kim, I.-Y., Seo, S.-J., Moon, H.-S., Yoo, M.-K., Park, I.-Y., Kim, B.-C., & Cho, C.-S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26(1), 1–21.

Kishen, A., Shi, Z., Shrestha, A., & Neoh, K. G. (2008). An Investigation on the Antibacterial and Antibiofilm Efficacy of Cationic Nanoparticulates for Root Canal Disinfection. Journal of Endodontics, 34(12), 1515–1520.

Kozen, B. G., Kircher, S. J., Henao, J., Godinez, F. S., & Johnson, A. S. (2008). An alternative hemostatic dressing: Comparison of CELOX, HemCon, and QuikClot. Academic Emergency Medicine, 15(1), 74–81.

Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104(12), 6017–6084.

Loh, J. W., Yeoh, G., Saunders, M., & Lim, L.-Y. (2010). Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicology and Applied Pharmacology, 249(2), 148–57.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

Park, M.-R., Gurunathan, S., Choi, Y.-J., Kwon, D.-N., Han, J.-W., Cho, S.-G., … Kim, J.-H. (2013). Chitosan Nanoparticles Cause Pre- and Postimplantation Embryo Complications in Mice1. Biology of Reproduction, 88(4), 1–13.

Poth, N., Seiffart, V., Gross, G., Menzel, H., & Dempwolf, W. (2015). Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules, 5(1), 3–19.

R. Arancibia, C. Maturana, D. Silva, N. Tobar, C. Tapia, J.C. Salazar, J. M. and P. C. S. (2013). Effects of Chitosan Particles in Periodontal Pathogens and.

Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457–1465.

Shrestha, A., Zhilong, S., Gee, N. K., & Kishen, A. (2010). Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. Journal of Endodontics, 36(6), 1030–1035.

Shrestha, S., Diogenes, A., & Kishen, A. (2014). Temporal-controlled release of bovine serum albumin from chitosan nanoparticles: effect on the regulation of alkaline phosphatase activity in stem cells from apical papilla. Journal of Endodontics, 40(9), 1349–1354.

Shrestha, S., Diogenes, A., & Kishen, A. (2015). Temporal-controlled Dexamethasone Releasing Chitosan Nanoparticle System Enhances Odontogenic Differentiation of Stem Cells from Apical Papilla. Journal of Endodontics, 41(8), 1253–1258.

Silva D, Arancibia R, Tapia C, Acu~na-Rougier C, Diaz-Dosque M, C_aceres M, Mart_ınez J, S. P. (2013). Chitosan and platelet-derived growth factor synergistically stimulate cell proliferation in gingival fibroblasts, (2), 677–686.

Stanislawski, L., Carreau, J. P., Pouchelet, M., Chen, Z. H., & Goldberg, M. (1997). In vitro culture of human dental pulp cells: some aspects of cells emerging early from the explant. Clinical Oral Investigations, 1(3), 131–40.

Travan, A., Marsich, E., Donati, I., Benincasa, M., Giazzon, M., Felisari, L., & Paoletti, S. (2011). Acta Biomaterialia Silver – polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomaterialia, 7(1), 337–346.

Ueno, H. (2001). Topical formulations and wound healing applications of chitosan 2 . Topical findings of healing with chitosan at early phase of experimental open skin wound, 52, 105–115.

Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., … Fujinaga, T. (1999). Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials, 20(15), 1407–1414.

Virlan, M. J. R., Miricescu, D., Radulescu, R., Sabliov, C. M., Totan, A., Calenic, B., & Greabu, M. (2016). Organic nanomaterials and their applications in the treatment of oral diseases. Molecules, 21(2), 1–23.

Xu, Z., Chou, L., & Sun, J. (2012). Effects of SiO2nanoparticles on HFL-I activating ROS-mediated apoptosis via p53 pathway. Journal of Applied Toxicology, 32(5), 358–364.

Yuan, Y., Liu, C., Qian, J., Wang, J., & Zhang, Y. (2010). Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials, 31(4), 730–740.

Yuan, Z., Li, Y., Hu, Y., You, J., Higashisaka, K., Nagano, K., … Gao, J. (2016). Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos. International Journal of Pharmaceutics, 515(1–2), 644–656.

Zhang, X., Li, Y., Sun, X., Kishen, A., Deng, X., Yang, X., … Wu, M. (2014). Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. Journal of Materials Science: Materials in Medicine, 25(12), 2619–2628.

(852 Abstract Views, 217 PDF Downloads)


Copyright (c) 2019 Rami Alhomrany, Chang Zhang, Laisheng Chou

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.